山東肥城市泰西中學(xué)2021-2022學(xué)年高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第1頁
山東肥城市泰西中學(xué)2021-2022學(xué)年高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第2頁
山東肥城市泰西中學(xué)2021-2022學(xué)年高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第3頁
山東肥城市泰西中學(xué)2021-2022學(xué)年高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第4頁
山東肥城市泰西中學(xué)2021-2022學(xué)年高考數(shù)學(xué)考前最后一卷預(yù)測卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知復(fù)數(shù)滿足(其中為的共軛復(fù)數(shù)),則的值為()A.1 B.2 C. D.2.某幾何體的三視圖如圖所示,若側(cè)視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.3.設(shè)為定義在上的奇函數(shù),當(dāng)時,(為常數(shù)),則不等式的解集為()A. B. C. D.4.函數(shù)(或)的圖象大致是()A. B. C. D.5.函數(shù)的圖象大致是()A. B.C. D.6.已知函數(shù)的定義域?yàn)?,且,?dāng)時,.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.87.已知點(diǎn)是拋物線:的焦點(diǎn),點(diǎn)為拋物線的對稱軸與其準(zhǔn)線的交點(diǎn),過作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為()A. B. C. D.8.已知雙曲線的左、右頂點(diǎn)分別是,雙曲線的右焦點(diǎn)為,點(diǎn)在過且垂直于軸的直線上,當(dāng)?shù)耐饨訄A面積達(dá)到最小時,點(diǎn)恰好在雙曲線上,則該雙曲線的方程為()A. B.C. D.9.已知函數(shù),,且在上是單調(diào)函數(shù),則下列說法正確的是()A. B.C.函數(shù)在上單調(diào)遞減 D.函數(shù)的圖像關(guān)于點(diǎn)對稱10.點(diǎn)為不等式組所表示的平面區(qū)域上的動點(diǎn),則的取值范圍是()A. B. C. D.11.函數(shù)f(x)=2x-3A.[32C.[3212.已知定義在R上的函數(shù)(m為實(shí)數(shù))為偶函數(shù),記,,則a,b,c的大小關(guān)系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若函數(shù)的圖像與直線的三個相鄰交點(diǎn)的橫坐標(biāo)分別是,,,則實(shí)數(shù)的值為________.14.小李參加有關(guān)“學(xué)習(xí)強(qiáng)國”的答題活動,要從4道題中隨機(jī)抽取2道作答,小李會其中的三道題,則抽到的2道題小李都會的概率為_____.15.的展開式中,的系數(shù)是__________.(用數(shù)字填寫答案)16.在矩形ABCD中,,,點(diǎn)E,F(xiàn)分別為BC,CD邊上動點(diǎn),且滿足,則的最大值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若關(guān)于x的方程有唯一的實(shí)數(shù)解,求a的取值范圍.18.(12分)已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),為數(shù)列的前項(xiàng)和,記,證明:.19.(12分)一種游戲的規(guī)則為拋擲一枚硬幣,每次正面向上得2分,反面向上得1分.(1)設(shè)拋擲4次的得分為,求變量的分布列和數(shù)學(xué)期望.(2)當(dāng)游戲得分為時,游戲停止,記得分的概率和為.①求;②當(dāng)時,記,證明:數(shù)列為常數(shù)列,數(shù)列為等比數(shù)列.20.(12分)設(shè)函數(shù),直線與函數(shù)圖象相鄰兩交點(diǎn)的距離為.(Ⅰ)求的值;(Ⅱ)在中,角所對的邊分別是,若點(diǎn)是函數(shù)圖象的一個對稱中心,且,求面積的最大值.21.(12分)已知.(1)若曲線在點(diǎn)處的切線也與曲線相切,求實(shí)數(shù)的值;(2)試討論函數(shù)零點(diǎn)的個數(shù).22.(10分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若對恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

按照復(fù)數(shù)的運(yùn)算法則先求出,再寫出,進(jìn)而求出.【詳解】,,.故選:D【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)及復(fù)數(shù)的模,考查基本運(yùn)算能力,屬于基礎(chǔ)題.2.C【解析】

由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.3.D【解析】

由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【詳解】因?yàn)樵谏鲜瞧婧瘮?shù).所以,解得,所以當(dāng)時,,且時,單調(diào)遞增,所以在上單調(diào)遞增,因?yàn)?,故有,解?故選:D.【點(diǎn)睛】本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學(xué)生對函數(shù)性質(zhì)的靈活運(yùn)用能力,是一道中檔題.4.A【解析】

確定函數(shù)的奇偶性,排除兩個選項(xiàng),再求時的函數(shù)值,再排除一個,得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對稱,排除B,C,當(dāng)時,,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢,排除錯誤選項(xiàng),得正確結(jié)論.5.C【解析】

根據(jù)函數(shù)奇偶性可排除AB選項(xiàng);結(jié)合特殊值,即可排除D選項(xiàng).【詳解】∵,,∴函數(shù)為奇函數(shù),∴排除選項(xiàng)A,B;又∵當(dāng)時,,故選:C.【點(diǎn)睛】本題考查了依據(jù)函數(shù)解析式選擇函數(shù)圖象,注意奇偶性及特殊值的用法,屬于基礎(chǔ)題.6.A【解析】

根據(jù)所給函數(shù)解析式滿足的等量關(guān)系及指數(shù)冪運(yùn)算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【詳解】函數(shù)的定義域?yàn)椋?,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【點(diǎn)睛】本題考查了指數(shù)冪的運(yùn)算及化簡,利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.7.D【解析】

根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設(shè)雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點(diǎn)睛】本題考查拋物線及雙曲線的方程及簡單性質(zhì),考查轉(zhuǎn)化思想,考查計(jì)算能力,屬于中檔題.8.A【解析】

點(diǎn)的坐標(biāo)為,,展開利用均值不等式得到最值,將點(diǎn)代入雙曲線計(jì)算得到答案.【詳解】不妨設(shè)點(diǎn)的坐標(biāo)為,由于為定值,由正弦定理可知當(dāng)取得最大值時,的外接圓面積取得最小值,也等價于取得最大值,因?yàn)?,,所以,?dāng)且僅當(dāng),即當(dāng)時,等號成立,此時最大,此時的外接圓面積取最小值,點(diǎn)的坐標(biāo)為,代入可得,.所以雙曲線的方程為.故選:【點(diǎn)睛】本題考查了求雙曲線方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.9.B【解析】

根據(jù)函數(shù),在上是單調(diào)函數(shù),確定,然后一一驗(yàn)證,A.若,則,由,得,但.B.由,,確定,再求解驗(yàn)證.C.利用整體法根據(jù)正弦函數(shù)的單調(diào)性判斷.D.計(jì)算是否為0.【詳解】因?yàn)楹瘮?shù),在上是單調(diào)函數(shù),所以,即,所以,若,則,又因?yàn)?,即,解得,而,故A錯誤.由,不妨令,得由,得或當(dāng)時,,不合題意.當(dāng)時,,此時所以,故B正確.因?yàn)?,函?shù),在上是單調(diào)遞增,故C錯誤.,故D錯誤.故選:B【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)及其應(yīng)用,還考查了運(yùn)算求解的能力,屬于較難的題.10.B【解析】

作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,利用的幾何意義即可得到結(jié)論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點(diǎn)到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)目標(biāo)函數(shù)的幾何意義結(jié)合斜率公式是解決本題的關(guān)鍵.11.A【解析】

根據(jù)冪函數(shù)的定義域與分母不為零列不等式組求解即可.【詳解】因?yàn)楹瘮?shù)y=2x-3解得x≥32且∴函數(shù)f(x)=2x-3+1【點(diǎn)睛】定義域的三種類型及求法:(1)已知函數(shù)的解析式,則構(gòu)造使解析式有意義的不等式(組)求解;(2)對實(shí)際問題:由實(shí)際意義及使解析式有意義構(gòu)成的不等式(組)求解;(3)若已知函數(shù)fx的定義域?yàn)閍,b,則函數(shù)fgx12.B【解析】

根據(jù)f(x)為偶函數(shù)便可求出m=0,從而f(x)=﹣1,根據(jù)此函數(shù)的奇偶性與單調(diào)性即可作出判斷.【詳解】解:∵f(x)為偶函數(shù);∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上單調(diào)遞增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故選B.【點(diǎn)睛】本題考查偶函數(shù)的定義,指數(shù)函數(shù)的單調(diào)性,對于偶函數(shù)比較函數(shù)值大小的方法就是將自變量的值變到區(qū)間[0,+∞)上,根據(jù)單調(diào)性去比較函數(shù)值大?。?、填空題:本題共4小題,每小題5分,共20分。13.4【解析】

由題可分析函數(shù)與的三個相鄰交點(diǎn)中不相鄰的兩個交點(diǎn)距離為,即,進(jìn)而求解即可【詳解】由題意得函數(shù)的最小正周期,解得故答案為:4【點(diǎn)睛】本題考查正弦型函數(shù)周期的應(yīng)用,考查求正弦型函數(shù)中的14.【解析】

從四道題中隨機(jī)抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機(jī)抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故答案為:【點(diǎn)睛】此題考查根據(jù)古典概型求概率,關(guān)鍵在于根據(jù)題意準(zhǔn)確求出基本事件的總數(shù)和某一事件包含的基本事件個數(shù).15.【解析】

根據(jù)組合的知識,結(jié)合組合數(shù)的公式,可得結(jié)果.【詳解】由題可知:項(xiàng)來源可以是:(1)取1個,4個(2)取2個,3個的系數(shù)為:故答案為:【點(diǎn)睛】本題主要考查組合的知識,熟悉二項(xiàng)式定理展開式中每一項(xiàng)的來源,實(shí)質(zhì)上每個因式中各取一項(xiàng)的乘積,轉(zhuǎn)化為組合的知識,屬中檔題.16.【解析】

利用平面直角坐標(biāo)系,設(shè)出點(diǎn)E,F(xiàn)的坐標(biāo),由可得,利用數(shù)量積運(yùn)算求得,再利用線性規(guī)劃的知識求出的最大值.【詳解】建立平面直角坐標(biāo)系,如圖(1)所示:設(shè),,,即,又,令,其中,畫出圖形,如圖(2)所示:當(dāng)直線經(jīng)過點(diǎn)時,取得最大值.故答案為:【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、簡單的線性規(guī)劃問題,解題的關(guān)鍵是建立恰當(dāng)?shù)淖鴺?biāo)系,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)當(dāng)時,遞增區(qū)間時,無遞減區(qū)間,當(dāng)時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】

(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標(biāo)準(zhǔn),若不恒成立,求解,即可得出結(jié)論;(2)有解,即,令,轉(zhuǎn)化求函數(shù)只有一個實(shí)數(shù)解,根據(jù)(1)中的結(jié)論,即可求解.【詳解】(1),當(dāng)時,恒成立,當(dāng)時,,綜上,當(dāng)時,遞增區(qū)間時,無遞減區(qū)間,當(dāng)時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點(diǎn)時,的取值范圍,由(1)得當(dāng)時,在單調(diào)遞增,且,函數(shù)只有一個零點(diǎn),原方程只有一個解,當(dāng)時,由(1)得在出取得極小值,也是最小值,當(dāng)時,,此時函數(shù)只有一個零點(diǎn),原方程只有一個解,當(dāng)且遞增區(qū)間時,遞減區(qū)間時;,當(dāng),有兩個零點(diǎn),即原方程有兩個解,不合題意,所以的取值范圍是或.【點(diǎn)睛】本題考查導(dǎo)數(shù)的綜合應(yīng)用,涉及到單調(diào)性、零點(diǎn)、極值最值,考查分類討論和等價轉(zhuǎn)化思想,屬于中檔題.18.(Ⅰ),;(Ⅱ)見解析【解析】

(Ⅰ)由,且成等差數(shù)列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項(xiàng)相消法求,即可得到本題答案.【詳解】(Ⅰ)因?yàn)閿?shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,,可設(shè)公比為q,,又成等差數(shù)列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因?yàn)?,所以?【點(diǎn)睛】本題主要考查等差等比數(shù)列的綜合應(yīng)用,以及用裂項(xiàng)相消法求和并證明不等式,考查學(xué)生的運(yùn)算求解能力和推理證明能力.19.(1)分布列見解析,數(shù)學(xué)期望為6;(2)①;②證明見解析【解析】

(1)變量的所有可能取值為4,5,6,7,8,分別求出對應(yīng)的概率,進(jìn)而可求出變量的分布列和數(shù)學(xué)期望;(2)①得2分只需要拋擲一次正面向上或兩次反面向上,分別求出兩種情況的概率,進(jìn)而可求得;②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,可知當(dāng)且時,,結(jié)合,可推出,從而可證明數(shù)列為常數(shù)列;結(jié)合,可推出,進(jìn)而可證明數(shù)列為等比數(shù)列.【詳解】(1)變量的所有可能取值為4,5,6,7,8.每次拋擲一次硬幣,正面向上的概率為,反面向上的概率也為,則,.所以變量的分布列為:45678故變量的數(shù)學(xué)期望為.(2)①得2分只需要拋擲一次正面向上或兩次反面向上,概率的和為.②得分分兩種情況,第一種為得分后拋擲一次正面向上,第二種為得分后拋擲一次反面向上,故且時,有,則時,,所以,故數(shù)列為常數(shù)列;又,,所以數(shù)列為等比數(shù)列.【點(diǎn)睛】本題考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,考查常數(shù)列及等比數(shù)列的證明,考查學(xué)生的計(jì)算求解能力與推理論證能力,屬于中檔題.20.(Ⅰ)3;(Ⅱ).【解析】

(Ⅰ)函數(shù),利用和差公式和倍角公式,化簡即可求得;(Ⅱ)由(Ⅰ)知函數(shù),根據(jù)點(diǎn)是函數(shù)圖象的一個對稱中心,代入可得,利用余弦定理、基本不等式的性質(zhì)即可得出.【詳解】(Ⅰ)的最大值為最小正周期為(Ⅱ)由題意及(Ⅰ)知,,故故的面積的最大值為.【點(diǎn)睛】本題考查三角函數(shù)的和差公式、倍角公式、三角函數(shù)的圖象與性質(zhì)、余弦定理、基本不等式的性質(zhì),考查理解辨析能力與運(yùn)算求解能力,屬于中檔基礎(chǔ)題.21.(1)(2)答案不唯一具體見解析【解析】

(1)利用導(dǎo)數(shù)的幾何意義,設(shè)切點(diǎn)的坐標(biāo),用不同的方式求出兩種切線方程,但兩條切線本質(zhì)為同一條,從而得到方程組,再構(gòu)造函數(shù)研究其最大值,進(jìn)而求得;(2)對函數(shù)進(jìn)行求導(dǎo)后得,對分三種情況進(jìn)行一級討論,即,,,結(jié)合函數(shù)圖象的單調(diào)性及零點(diǎn)存在定理,可得函數(shù)零點(diǎn)情況.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論