(新課改地區(qū))2021屆高考數(shù)學(xué)一輪復(fù)習(xí)課件:第六章不等式6.2均值不等式_第1頁(yè)
(新課改地區(qū))2021屆高考數(shù)學(xué)一輪復(fù)習(xí)課件:第六章不等式6.2均值不等式_第2頁(yè)
(新課改地區(qū))2021屆高考數(shù)學(xué)一輪復(fù)習(xí)課件:第六章不等式6.2均值不等式_第3頁(yè)
(新課改地區(qū))2021屆高考數(shù)學(xué)一輪復(fù)習(xí)課件:第六章不等式6.2均值不等式_第4頁(yè)
(新課改地區(qū))2021屆高考數(shù)學(xué)一輪復(fù)習(xí)課件:第六章不等式6.2均值不等式_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第二節(jié)均值不等式【教材·知識(shí)梳理】1.均值定理:≥(1)成立的條件_________.(2)等號(hào)成立的條件:當(dāng)且僅當(dāng)____時(shí)取等號(hào).a>0,b>0a=b2.利用均值不等式求最值問題已知x>0,y>0,則(1)如果積xy是定值p,那么當(dāng)且僅當(dāng)____時(shí),x+y有最___值2.(簡(jiǎn)記:積定和最小)(2)如果和x+y是定值p,那么當(dāng)且僅當(dāng)____時(shí),xy有最___值.(簡(jiǎn)記:和定積最大)x=y小x=y大【常用結(jié)論】1.均值不等式的兩種常用變形形式(1)ab≤(a,b∈R,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào)).(2)a+b≥2(a>0,b>0,當(dāng)且僅當(dāng)a=b時(shí)取等號(hào)).2.幾個(gè)重要的結(jié)論(1)≥.(2)≥2(ab>0).(3)≤≤≤(a>0,b>0).【知識(shí)點(diǎn)辨析】(正確的打“√”,錯(cuò)誤的打“×”)(1)重要不等式和均值不等式成立的條件、等號(hào)成立的條件都是相同的.(

)(2)a,b都是非負(fù)數(shù),a+b≥2,那么a+b的最小值是2. (

)(3)函數(shù)f(x)=x+的最小值是2. (

)提示:(1)×.變量范圍不同.(2)×.2是否是最小值既要看ab是否為定值,還要看等號(hào)是否成立.(3)×.函數(shù)f(x)=x+的值域?yàn)?-∞,-2]∪[2,+∞),沒有最小值.【易錯(cuò)點(diǎn)索引】序號(hào)易錯(cuò)警示典題索引1忽視定值拼湊考點(diǎn)一、角度12忽視定值構(gòu)造考點(diǎn)一、角度23忽視整體構(gòu)造考點(diǎn)一、角度4【教材·基礎(chǔ)自測(cè)】1(必修5P73習(xí)題3-2AT9改編)當(dāng)x>1時(shí),x+的最小值為________.

【解析】當(dāng)x>1時(shí),x+=x-1++1≥+1=3,當(dāng)且僅當(dāng)x-1=,即x=2時(shí)等號(hào)成立.答案:32.(必修5P72練習(xí)BT5改編)要制作一個(gè)容積為4m3,高為1m的無(wú)蓋長(zhǎng)方體容器.已知該容器的底面造價(jià)是每平方米20元,側(cè)面造價(jià)是每平方米10元,則該容器的最低總造價(jià)是________元.

【解析】設(shè)底面的相鄰兩邊長(zhǎng)分別為xm,ym,總造價(jià)為T元,則V=xy·1=4?xy=4.T=4×20+(2x+2y)×1×10=80+20(x+y)≥80+20×2=80+20×4=160(當(dāng)且僅當(dāng)x=y時(shí)取等號(hào)).故該容器的最低總造價(jià)是160元.答案:1603.(必修5P70例2(2)改編)若把總長(zhǎng)為20m的籬笆圍成一個(gè)矩形場(chǎng)地,則矩形場(chǎng)地的最大面積是________m2.

【解析】設(shè)一邊長(zhǎng)為xm,則另一邊長(zhǎng)可表示為(10-x)m,由題知0<x<10,則面積S=x(10-x)≤=25,當(dāng)且僅當(dāng)x=10-x,即x=5時(shí)等號(hào)成立,故當(dāng)矩形的長(zhǎng)與寬相等,且都為5m時(shí)面積取到最大值25m2.答案:25

【思想方法】轉(zhuǎn)化與化歸思想在恒成立問題中的應(yīng)用

【典例】設(shè)x>0,y>0,不等式≥0恒成立,則實(shí)數(shù)m的最小值是 (

)

A.-2

B.-4

C.1

D.2【解析】選B.因?yàn)閤>0,y>0,不等式≥0恒成立,所以只需m≥因?yàn)楫?dāng)且僅當(dāng)x=y時(shí)取等號(hào).所以m≥-4,所以m的最小值為-4.

【思想方法指導(dǎo)】恒成立問題一般可以轉(zhuǎn)化為最值問題,通過分離參數(shù)等方法,轉(zhuǎn)化為利用基本不等式求另一側(cè)函數(shù)式的最大值或最小值.

【遷移應(yīng)用】已知m>0,xy>0,當(dāng)x+y=2時(shí),不等式≥4恒成立,則m的取值范圍是(

)A.[,+∞) B.[2,+∞)

C.(0,] D.(,2]

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論