第05章 電容元件和電感元件_第1頁
第05章 電容元件和電感元件_第2頁
第05章 電容元件和電感元件_第3頁
第05章 電容元件和電感元件_第4頁
第05章 電容元件和電感元件_第5頁
已閱讀5頁,還剩38頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第5章電容元件和電感元件主講教師齊超15.1

電容元件5.2

電感元件5.3

耦合電感5.4

理想變壓器本章目次

本章介紹電容元件、電感元件。它們是重要的儲能元件。其端口電壓、電流關系不是代數關系而是微分或積分關系,因此又稱為動態(tài)元件。通過本章學習,應掌握電容元件、電感元件、互感元件的特性方程、能量計算及各種等效變換。此外還介紹理想變壓器。2基本要求:熟練掌握電容元件端口特性方程、能量計算及串并聯等效變換。電容構成原理圖5.1電容的基本構成電容的電路符號d金屬極板面積A一般電容可變電容電解電容3電解電容器瓷質電容器聚丙烯膜電容器圖5.3a固定電容器實際電容器示例管式空氣可調電容器片式空氣可調電容器5.3b可變電容器4當電容器填充線性介質時,正極板上存儲的電荷量q與極板間電壓u成正比電容[系數],單位:F(法拉)表示。常用單位有μF(微法)及pF(皮法),分別表示為10-6F及10-12F。圖5.4線性電容電路符號和特性在u、q取關聯參考方向且C是正值時,線性電容的電路符號和它的電荷、電壓關系曲線如圖5.4所示。5已知電流i,求電荷q,反映電荷量的積儲過程

極板上電荷量增多或減少,在電容的端線中就有電流產生,如圖5.4(a)所示。(電容元件的VCR方程)

可見線性電容的端口電流并不取決于當前時刻電壓,而與端口電壓的時間變化率成正比,所以電容是一種動態(tài)元件。物理意義:t時刻電容上的電荷量是此刻以前由電流充電(或放電)而積累起來的。所以某一瞬時的電荷量不能由該瞬間時刻的電流值來確定,而須考慮此刻以前的全部電流的“歷史”,所以電容也屬于記憶元件。對于線性電容有6在關聯參考方向下,輸入線性電容端口的功率電容存儲的電場能量當|u(t)|↑

儲能↑即吸收能量→吸收功率當|u(t)|↓→儲能↓即釋放能量→發(fā)出功率所以電容是儲能元件。7同時電容的輸入功率與能量變化關系為

電容儲能隨時間的增加率從全過程來看,電容本身不能提供任何能量,正值的電容是無源元件。

綜上所述,正值電容是一種動態(tài)、記憶、無損、儲能、無源元件。假設

式(5.8)、(5.9)說明電容吸收的總能量全部儲存在電場中,所以電容又是無損元件。反之截止到t

瞬間,從外部輸入電容的能量為8[解]電阻消耗的電能為電容最終儲存的電荷為由此可知

[補充5.1]圖示RC串聯電路,設uC(0)=0,i(t)=Ie-t/RC。求在0<t<∞時間內電阻消耗的電能和電容存儲的電能,并比較二者大小。補充5.1iR_+Cu電容最終儲能為9設在串聯前電容上無電荷,根據KVL及電容元件的電壓-電流關系得圖5.5(a)

電容的串聯在使用電容器時,除了要關注其電容值外,還要注意它的額定電壓。使用時若電壓超過額定電壓,電容就有可能會因介質被擊穿而損壞。為了提高總電容承受的電壓,可將若干電容串聯起來使用,如圖5.5(a)所示。

10串聯等效電容的倒數等于各電容的倒數之和。如圖5.5(b)所示。

11由于并聯電容的總電荷量等于各電容的電荷量之和,即

所以并聯等效電容等于各電容之和,等效電路如圖5.6(b)所示

注:如果在并聯或串聯前電容上存在電荷,則除了須計算等效電容外還須計算等效電容的初始電壓。為了得到電容值較大電容,可將若干電容并聯起來使用,如圖5.6(a)所示。

12在直流電路中電容相當于開路,據此求得電容電壓分別為所以兩個電容儲存的電場能量分別為

圖示電路,設,,電路處于直流工作狀態(tài)。計算兩個電容各自儲存的電場能量。13設0.2F電容流過的電流波形如圖

(a)所示,已知。試計算電容電壓的變化規(guī)律并畫出波形。(1):,電容充電電容電壓計算如下14(2):,電容放電(3):此時,電容電壓保持不變,電容電壓的變化規(guī)律波形如右圖15幾種實際的電感線圈如圖5.9所示。

圖5.9幾種實際電感線圈示例

基本要求:熟練掌握電感元件端口特性方程、能量計算及串并聯等效變換。16對線性電感,其端口特性方程

即線性電感的端口電壓與端口電流的時間變化率成正比。因為電感上電壓-電流關系是微分或積分關系,所以電感也屬動態(tài)元件。根據電磁感應定律和楞茨定律,當電壓、電流方向如下圖所示,并且電流與磁通的參考方向遵循右螺旋法則時,端口電壓u與感應電動勢e關系如下17若已知電壓求磁鏈或電流,則此兩式表明,電感中某一瞬間的磁鏈和電流決定于此瞬間以前的全過程的電壓,因此電感也屬于記憶元件。

線性電感吸收的功率為電感存儲的磁場能量()

18截止到t時刻電感吸收的能量為:上式說明電感吸收的總能量全部儲存在磁場中,所以電感又是無損元件。電感的串聯:電感也可以串聯或并聯。仿照電容串、并聯電路的分析可以得出結論:電感串聯時,電感也是儲能元件。圖5.12電感的串聯等效等效電感等于各電感之和,即19電感的并聯:電感并聯時,等效電感的倒數等于各電感倒數之和,即

說明:從電路模型上講,電感在串聯或并聯之前可以假設存在一定的磁鏈或電流。這樣,串聯或并聯聯接后,除須計算等效電感外,還須計算等效電感的初始磁鏈或初始電流。

圖5.13電感的并聯等效20根據電流的變化規(guī)律,分段計算如下電路如圖

(a)所示,0.1H電感通以圖

(b)所示的電流。求時間電感電壓、吸收功率及儲存能量的變化規(guī)律。圖5.14例題5.32122電壓、功率及能量均為零。各時段的電壓、功率及能量的變化規(guī)律如右圖(c)、(d)、(e)所示。小結:本題可見,電流源的端電壓取決于外電路,即決定于電感。而電感電壓與電流的變化率成正比。因而當時,雖然電流最大,電壓卻為零。23在圖5.16a中,可明顯地判斷自感磁鏈和互感磁鏈的方向是相同或相反。但當將實際線圈抽象成圖5.16(b)所示的電路模型時,就靠電流進、出同名端來判斷互感磁鏈的+(或-)。24同名端

使所激發(fā)的自感磁鏈和互感磁鏈方向一致的兩個線圈電流的進端或出端。

換言之,兩個端口電流都流進(或流出)同名端,表示它們所激發(fā)的自感磁鏈和互感磁鏈方向一致,(總磁鏈在原自感磁鏈基礎上增強)。當兩個電流的參考方向是從非同名端流入時,它們所激發(fā)的自感磁鏈與互感磁鏈方向相反,(總磁鏈在原自感磁鏈基礎上削弱)。如圖5.17所示。25同名端也可以等價說成:當某線圈電流增加時,流入電流的端子與另一線圈互感電壓為正極性的端子為同名端。根據這一原理,在實驗中,使某線圈流入遞增電流,通過測試另一線圈互感電壓的極性便可找出同名端。

26根據電磁感應定律,在端口電壓、電流為關聯參考方向,并且自感磁通與電流符合右手螺旋關系時,互感元件的電壓電流關系方程為若式中u1、i1

或u2、i2的參考方向相反,則L1或L2前應添入負號;若u1、i2

或u2、i1的參考方向相對星標*是相同的,則M前取正號,否則應取負號。27分析1)從圖(a)知,端口1的電壓和電流為關聯參考方向,自感電壓前為正

,2)引起互感電壓的電流參考方向是從所在端口2的非*指向*端,與引起的電流從自端口*端指向非*端方向相反,因此前取負;[補充5.2]列出圖示兩個互感元件的特性方程28上述列寫互感方程的方法稱為逐項判斷法。故圖(a)所示的互感元件特性方成為3)端口2的電壓和電流為非關聯參考方向,自感電壓前為負,4)引起互感電壓的電流參考方向是從端口1的*指向非*端,相對與端口2來說與的參考方向關聯一致,故前取正。29基于相似解釋,圖(b)所示互感元件的特性方程。

30正如一端口電感那樣,輸入互感的總能量將全部轉化為磁場能量互感總功率,在關聯參考方向下

31定義耦合系數

用來衡量互感耦合的程度

如果沒有磁耦合,M=0,磁能就是兩個自感元件分別儲能之和。存在磁耦合時,要增減一項Mi1i2,增與減要視互感的作用是使磁場增強還是使磁場減弱而定。

32含互感元件電路的連接由此可得串聯等效電感如圖5.18c所示

圖5.18c注:正串2M前取正,等效電感大于倆自感之和;反串2M前取負,等效電感小于倆自感之和。1互感元件的串聯電流從同名端流入→正串(或順接)

電流從異名端流入→反串(或反接)圖5.18a圖5.18b332互感元件的并聯(3)代入(1)得:(3)代(2)得:由此消去互感的等效電路如圖5.19(b)圖5.19(a)互感兩同名端并聯電路

圖5.19(a)表示兩個同名端相接。為求其等效電路,分別列KCL和KVL方程:圖中各等效電感為

34同理,異名端連接時的總等效電感為

對于實際的耦合線圈,無論何種串聯或何種并聯,其等效電感均為正值。所以自感和互感滿足如下關系

耦合系數滿足

如無需計算電流,根據電感的串、并聯等效,圖5.19(b)可進一步等效成一個電感,如圖5.19(c),

圖5.19(c)等效電感35

3互感線圈的T型聯接圖5.20(b)中各等效電感為

圖5.20互感的T型等效電路如圖5.20(a)所示,圖5.20(b)是不含磁耦合的等效電路由于耦合線圈含有電阻,在較接近實際的電路模型中兩自感都含有串聯電阻。

其等效電感的計算與式(5.36)相同。就是說,即便模型中含有串聯電阻,也可以通過這種方法來消除互感,得到無互感等效電路。36一個實際耦合電感,例如空心變壓器(一種繞在非鐵磁材料上的變壓器),一般需要考慮繞組電阻,此時可用帶有串聯等效電阻的互感來表示其電路模型,如圖5.21所示。圖中u1與i2參考方向相對星標*是相反的,u2與i1也是相反的,故M前均應取負號,端口特性方程將是:37理想化認為1)鐵心的磁導率2)每個線圈的漏磁通為零,即兩個線圈為全耦合3)線圈電阻為零,端口電壓等于感應電動勢4)鐵心的損耗為零相應有理想變壓器的端口方程

理想變壓器是實際電磁耦合元件的一種理想化模型,如圖5.22和5.23。38變比(匝數比)理想變壓器方程與u、i的參考方向和兩線圈同名端位置有關圖5.24給出了一些同名端與理想變壓器端口方程的關系示例。圖5.24同名端與理想變壓器端口方程的關系示例對應的特性方程分別為(注意符號)39理想變壓器輸入的總功率為

說明變壓器元件不僅是無源的,而且每一瞬間輸入功率等于輸出功率,即傳輸過程中既無能量的損耗,也無能量的存儲,屬于非能元件.變壓器輸入端口等效電阻為

亦即當理想變壓器輸出端口接電阻

時,折算到輸入端口的等效電阻為。如圖5.25(b)所示。

在實際中變壓器不但可以變壓、變流,還可用于變換電阻。圖5.25(a)所示

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論