![數(shù)值分析(本科)函數(shù)逼近_第1頁](http://file4.renrendoc.com/view/6622f449bd7a33469422369915a03a60/6622f449bd7a33469422369915a03a601.gif)
![數(shù)值分析(本科)函數(shù)逼近_第2頁](http://file4.renrendoc.com/view/6622f449bd7a33469422369915a03a60/6622f449bd7a33469422369915a03a602.gif)
![數(shù)值分析(本科)函數(shù)逼近_第3頁](http://file4.renrendoc.com/view/6622f449bd7a33469422369915a03a60/6622f449bd7a33469422369915a03a603.gif)
![數(shù)值分析(本科)函數(shù)逼近_第4頁](http://file4.renrendoc.com/view/6622f449bd7a33469422369915a03a60/6622f449bd7a33469422369915a03a604.gif)
![數(shù)值分析(本科)函數(shù)逼近_第5頁](http://file4.renrendoc.com/view/6622f449bd7a33469422369915a03a60/6622f449bd7a33469422369915a03a605.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第四章函數(shù)逼近一、函數(shù)逼近之范數(shù)問題:如何度量兩個函數(shù)之間的距離?
二、函數(shù)逼近之生成的線性空間
注:該線性空間上的加法和數(shù)乘運算,即為通常的函數(shù)加法和數(shù)乘運算!三、函數(shù)逼近之最佳逼近問題
范數(shù)(距離)最小三、函數(shù)逼近之最佳逼近問題
四、函數(shù)逼近之正交多項式
注:
3)同樣兩個函數(shù)在不同內(nèi)積下,通常取值不同。四、函數(shù)逼近之正交多項式
四、函數(shù)逼近之正交多項式
內(nèi)積的性質(zhì):
四、函數(shù)逼近之正交多項式
注:正交與內(nèi)積的定義有關(guān),例如
不正交正交四、函數(shù)逼近之正交多項式
四、函數(shù)逼近之正交多項式
常見的正交多項式:勒讓德正交多項式;切比雪夫正交多項式;拉蓋爾正交多項式;埃爾米特正交多項式。四、函數(shù)逼近之正交多項式勒讓德(Legendre)切比雪夫(Chebyshev)權(quán)1區(qū)間通項正交遞推奇偶其它四、函數(shù)逼近之正交多項式拉蓋爾(Laguerre)埃爾米特(Hermite)權(quán)區(qū)間通項正交遞推奇偶其它四、函數(shù)逼近之最佳一致逼近
四、函數(shù)逼近之最佳一致逼近
四、函數(shù)逼近之最佳一致逼近問題:如何求最佳一致逼近多項式?
偏差:
正偏差點:
負偏差點:
何謂切比雪夫交錯點?偏差點四、函數(shù)逼近之最佳一致逼近問題:如何求最佳一致逼近多項式?
交錯點:
切比雪夫交錯點:
四、函數(shù)逼近之最佳一致逼近問題:如何求最佳一致逼近多項式?
該定理給出最佳一致逼近多項式的充要條件,但一般情況下還是很難根據(jù)該定理求解最佳一致逼近多項式。
四、函數(shù)逼近之最佳一致逼近
由于該函數(shù)連續(xù),故取極值的點只有兩種可能:該點的導(dǎo)數(shù)值為零,或是區(qū)間端點。四、函數(shù)逼近之最佳一致逼近
分析:
因此導(dǎo)函數(shù)取值為零的點最多只有一個。
四、函數(shù)逼近之最佳一致逼近
解之得
四、函數(shù)逼近之最佳一致逼近
分析:故
解之得四、函數(shù)逼近之最佳一致逼近
分析:故
四、函數(shù)逼近之最佳一致逼近
四、函數(shù)逼近之最佳一致逼近
四、函數(shù)逼近之最佳一致逼近
四、函數(shù)逼近之最佳一致逼近
計算中點;四、函數(shù)逼近之最佳一致逼近
解.
四、函數(shù)逼近之最佳一致逼近
解.
四、函數(shù)逼近之最佳平方逼近
四、函數(shù)逼近之最佳平方逼近
注:
等價于求
四、函數(shù)逼近之最佳平方逼近
則原問題就可歸結(jié)為計算多元函數(shù)的極小值
四、函數(shù)逼近之最佳平方逼近由多元函數(shù)取極值的必要條件:可得線性方程組
四、函數(shù)逼近之最佳平方逼近其矩陣形式為
注:該線性方程組稱為法方程。
四、函數(shù)逼近之最佳平方逼近
以法方程的解作為線性組合的系數(shù),得
四、函數(shù)逼近之最佳平方逼近
則
這兩個積分比較復(fù)雜,在下一章將學(xué)習(xí)利用數(shù)值積分來近似計算!四、函數(shù)逼近之最佳平方逼近
解.法方程為
所以線性最佳平方逼近多項式為
解之得
四、函數(shù)逼近之最佳平方逼近
解.法方程為
所以線性最佳平方逼近多項式為
四、函數(shù)逼近之最小二乘法若已知連續(xù)函數(shù)的表達式,則利用最佳平方逼近構(gòu)造簡單函數(shù)來逼近。
四、函數(shù)逼近之最小二乘法可以證明最小二乘逼近函數(shù)是存在且唯一的。
四、函數(shù)逼近之最小二乘法
0.240.650.951.241.732.012.232.522.772.990.23
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車制造行業(yè)顧問工作總結(jié)
- 年產(chǎn)800萬平方米水性超細纖維材料項目可行性研究報告寫作模板-申批備案
- 2025年全球及中國建筑隔熱用氣凝膠行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國有機肥快速測定儀行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國實驗室冷藏柜行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國管路無菌連接器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球模型實時運維系統(tǒng)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國2.4GHz 無線通訊芯片行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球金屬加工磨料行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球高效智能無孔包衣機行業(yè)調(diào)研及趨勢分析報告
- 電網(wǎng)工程設(shè)備材料信息參考價(2024年第四季度)
- 2025年江蘇農(nóng)牧科技職業(yè)學(xué)院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025江蘇連云港市贛榆城市建設(shè)發(fā)展集團限公司招聘工作人員15人高頻重點提升(共500題)附帶答案詳解
- 江蘇省揚州市蔣王小學(xué)2023~2024年五年級上學(xué)期英語期末試卷(含答案無聽力原文無音頻)
- 數(shù)學(xué)-湖南省新高考教學(xué)教研聯(lián)盟(長郡二十校聯(lián)盟)2024-2025學(xué)年2025屆高三上學(xué)期第一次預(yù)熱演練試題和答案
- 決勝中層:中層管理者的九項修煉-記錄
- 《有機化學(xué)》課件-第十章 羧酸及其衍生物
- 2024年海南公務(wù)員考試申論試題(A卷)
- 中醫(yī)培訓(xùn)課件:《經(jīng)穴推拿術(shù)》
- 臨床藥師進修匯報課件
- 北京市首都師大附中2025屆數(shù)學(xué)高三第一學(xué)期期末達標(biāo)測試試題含解析
評論
0/150
提交評論