2022-2023學年陜西省渭南韓城市高三第四次模擬考試數學試卷含解析_第1頁
2022-2023學年陜西省渭南韓城市高三第四次模擬考試數學試卷含解析_第2頁
2022-2023學年陜西省渭南韓城市高三第四次模擬考試數學試卷含解析_第3頁
2022-2023學年陜西省渭南韓城市高三第四次模擬考試數學試卷含解析_第4頁
2022-2023學年陜西省渭南韓城市高三第四次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列四個結論中正確的個數是(1)對于命題使得,則都有;(2)已知,則(3)已知回歸直線的斜率的估計值是2,樣本點的中心為(4,5),則回歸直線方程為;(4)“”是“”的充分不必要條件.A.1 B.2 C.3 D.42.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.3.已知向量,,則向量在向量上的投影是()A. B. C. D.4.函數的對稱軸不可能為()A. B. C. D.5.已知傾斜角為的直線與直線垂直,則()A. B. C. D.6.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發(fā)現“圓柱內切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內切球體積為()A. B. C. D.7.已知函數,,若對任意的,存在實數滿足,使得,則的最大值是()A.3 B.2 C.4 D.58.點在曲線上,過作軸垂線,設與曲線交于點,,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數為()A.0 B.1 C.2 D.39.百年雙中的校訓是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味運動會中有這樣的一個小游戲.袋子中有大小、形狀完全相同的四個小球,分別寫有“仁”、“智”、“雅”、“和”四個字,有放回地從中任意摸出一個小球,直到“仁”、“智”兩個字都摸到就停止摸球.小明同學用隨機模擬的方法恰好在第三次停止摸球的概率.利用電腦隨機產生1到4之間(含1和4)取整數值的隨機數,分別用1,2,3,4代表“仁”、“智”、“雅”、“和”這四個字,以每三個隨機數為一組,表示摸球三次的結果,經隨機模擬產生了以下20組隨機數:141432341342234142243331112322342241244431233214344142134412由此可以估計,恰好第三次就停止摸球的概率為()A. B. C. D.10.已知,則不等式的解集是()A. B. C. D.11.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=012.是正四面體的面內一動點,為棱中點,記與平面成角為定值,若點的軌跡為一段拋物線,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若展開式中的常數項為240,則實數的值為________.14.在中,已知是的中點,且,點滿足,則的取值范圍是_______.15.在中,,.若,則_________.16.曲線f(x)=(x2+x)lnx在點(1,f(1))處的切線方程為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會主義生態(tài)文明的價值取向.為了改善空氣質量,某城市環(huán)保局隨機抽取了一年內100天的空氣質量指數(AQI)的檢測數據,結果統計如表:AQI空氣質量優(yōu)良輕度污染中度污染重度污染重度污染天數61418272510(1)從空氣質量指數屬于[0,50],(50,100]的天數中任取3天,求這3天中空氣質量至少有2天為優(yōu)的概率;(2)已知某企業(yè)每天因空氣質量造成的經濟損失y(單位:元)與空氣質量指數x的關系式為,假設該企業(yè)所在地7月與8月每天空氣質量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴重污染的概率分別為.9月每天的空氣質量對應的概率以表中100天的空氣質量的頻率代替.(i)記該企業(yè)9月每天因空氣質量造成的經濟損失為X元,求X的分布列;(ii)試問該企業(yè)7月、8月、9月這三個月因空氣質量造成的經濟損失總額的數學期望是否會超過2.88萬元?說明你的理由.18.(12分)已知函數(mR)的導函數為.(1)若函數存在極值,求m的取值范圍;(2)設函數(其中e為自然對數的底數),對任意mR,若關于x的不等式在(0,)上恒成立,求正整數k的取值集合.19.(12分)已知分別是橢圓的左、右焦點,直線與交于兩點,,且.(1)求的方程;(2)已知點是上的任意一點,不經過原點的直線與交于兩點,直線的斜率都存在,且,求的值.20.(12分)某企業(yè)質量檢驗員為了檢測生產線上零件的質量情況,從生產線上隨機抽取了個零件進行測量,根據所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據頻率分布直方圖,求這個零件尺寸的中位數(結果精確到);(2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設表示尺寸在上的零件個數,求的分布列及數學期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率.現對生產線上生產的零件進行成箱包裝出售,每箱個.企業(yè)在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為元.若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業(yè)要向買家對每個二等品支付元的賠償費用.現對一箱零件隨機抽檢了個,結果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據,該企業(yè)是否對該箱余下的所有零件進行檢驗?請說明理由.21.(12分)在直角坐標系中,曲線的參數方程為(為參數),將曲線上各點縱坐標伸長到原來的2倍(橫坐標不變)得到曲線,以坐標原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(1)寫出的極坐標方程與直線的直角坐標方程;(2)曲線上是否存在不同的兩點,(以上兩點坐標均為極坐標,,),使點、到的距離都為3?若存在,求的值;若不存在,請說明理由.22.(10分)已知離心率為的橢圓經過點.(1)求橢圓的方程;(2)薦橢圓的右焦點為,過點的直線與橢圓分別交于,若直線、、的斜率成等差數列,請問的面積是否為定值?若是,求出此定值;若不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由題意,(1)中,根據全稱命題與存在性命題的關系,即可判定是正確的;(2)中,根據正態(tài)分布曲線的性質,即可判定是正確的;(3)中,由回歸直線方程的性質和直線的點斜式方程,即可判定是正確;(4)中,基本不等式和充要條件的判定方法,即可判定.【詳解】由題意,(1)中,根據全稱命題與存在性命題的關系,可知命題使得,則都有,是錯誤的;(2)中,已知,正態(tài)分布曲線的性質,可知其對稱軸的方程為,所以是正確的;(3)中,回歸直線的斜率的估計值是2,樣本點的中心為(4,5),由回歸直線方程的性質和直線的點斜式方程,可得回歸直線方程為是正確;(4)中,當時,可得成立,當時,只需滿足,所以“”是“”成立的充分不必要條件.【點睛】本題主要考查了命題的真假判定及應用,其中解答中熟記含有量詞的否定、正態(tài)分布曲線的性質、回歸直線方程的性質,以及基本不等式的應用等知識點的應用,逐項判定是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.2、B【解析】

先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關系,以及兩平行線間的距離公式,其中解答中根據圓與雙曲線的右支沒有公共點得出是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、A【解析】

先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數學運算的能力,屬于中檔題.4、D【解析】

由條件利用余弦函數的圖象的對稱性,得出結論.【詳解】對于函數,令,解得,當時,函數的對稱軸為,,.故選:D.【點睛】本題主要考查余弦函數的圖象的對稱性,屬于基礎題.5、D【解析】

傾斜角為的直線與直線垂直,利用相互垂直的直線斜率之間的關系,同角三角函數基本關系式即可得出結果.【詳解】解:因為直線與直線垂直,所以,.又為直線傾斜角,解得.故選:D.【點睛】本題考查了相互垂直的直線斜率之間的關系,同角三角函數基本關系式,考查計算能力,屬于基礎題.6、D【解析】

設圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結合題中的結論即可求出該圓柱的內切球體積.【詳解】設圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內切球的體積是圓柱體積的,所以所求圓柱內切球的體積為.故選:D【點睛】本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關鍵;屬于中檔題.7、A【解析】

根據條件將問題轉化為,對于恒成立,然后構造函數,然后求出的范圍,進一步得到的最大值.【詳解】,,對任意的,存在實數滿足,使得,易得,即恒成立,,對于恒成立,設,則,令,在恒成立,,故存在,使得,即,當時,,單調遞減;當時,,單調遞增.,將代入得:,,且,故選:A【點睛】本題考查了利用導數研究函數的單調性,零點存在定理和不等式恒成立問題,考查了轉化思想,屬于難題.8、C【解析】

設,則,則,即可得,設,利用導函數判斷的零點的個數,即為所求.【詳解】設,則,所以,依題意可得,設,則,當時,,則單調遞減;當時,,則單調遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數為2.故選:C【點睛】本題考查利用導函數處理零點問題,考查向量的坐標運算,考查零點存在性定理的應用.9、A【解析】

由題意找出滿足恰好第三次就停止摸球的情況,用滿足恰好第三次就停止摸球的情況數比20即可得解.【詳解】由題意可知當1,2同時出現時即停止摸球,則滿足恰好第三次就停止摸球的情況共有五種:142,112,241,142,412.則恰好第三次就停止摸球的概率為.故選:A.【點睛】本題考查了簡單隨機抽樣中隨機數的應用和古典概型概率的計算,屬于基礎題.10、A【解析】

構造函數,通過分析的單調性和對稱性,求得不等式的解集.【詳解】構造函數,是單調遞增函數,且向左移動一個單位得到,的定義域為,且,所以為奇函數,圖像關于原點對稱,所以圖像關于對稱.不等式等價于,等價于,注意到,結合圖像關于對稱和單調遞增可知.所以不等式的解集是.故選:A【點睛】本小題主要考查根據函數的單調性和對稱性解不等式,屬于中檔題.11、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.12、B【解析】

設正四面體的棱長為,建立空間直角坐標系,求出各點的坐標,求出面的法向量,設的坐標,求出向量,求出線面所成角的正弦值,再由角的范圍,結合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標的關系,進而求出正切值.【詳解】由題意設四面體的棱長為,設為的中點,以為坐標原點,以為軸,以為軸,過垂直于面的直線為軸,建立如圖所示的空間直角坐標系,則可得,,取的三等分點、如圖,則,,,,所以、、、、,由題意設,,和都是等邊三角形,為的中點,,,,平面,為平面的一個法向量,因為與平面所成角為定值,則,由題意可得,因為的軌跡為一段拋物線且為定值,則也為定值,,可得,此時,則,.故選:B.【點睛】考查線面所成的角的求法,及正切值為定值時的情況,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、-3【解析】

依題意可得二項式展開式的常數項為即可得到方程,解得即可;【詳解】解:∵二項式的展開式中的常數項為,∴解得.故答案為:【點睛】本題考查二項式展開式中常數項的計算,屬于基礎題.14、【解析】

由中點公式的向量形式可得,即有,設,有,再分別討論三點共線和不共線時的情況,找到的關系,即可根據函數知識求出范圍.【詳解】是的中點,∴,即設,于是(1)當共線時,因為,①若點在之間,則,此時,;②若點在的延長線上,則,此時,.(2)當不共線時,根據余弦定理可得,解得,由,解得.綜上,故答案為:.【點睛】本題主要考查學中點公式的向量形式和數量積的定義的應用,以及余弦定理的應用,涉及到函數思想和分類討論思想的應用,解題關鍵是建立函數關系式,屬于中檔題.15、【解析】分析:首先設出相應的直角邊長,利用余弦勾股定理得到相應的斜邊長,之后應用余弦定理得到直角邊長之間的關系,從而應用正切函數的定義,對邊比臨邊,求得對應角的正切值,即可得結果.詳解:根據題意,設,則,根據,得,由勾股定理可得,根據余弦定理可得,化簡整理得,即,解得,所以,故答案是.點睛:該題考查的是有關解三角形的問題,在解題的過程中,注意分析要求對應角的正切值,需要求誰,而題中所給的條件與對應的結果之間有什么樣的連線,設出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應的等量關系,求得最后的結果.16、【解析】

求函數的導數,利用導數的幾何意義即可求出切線方程.【詳解】解:∵,

∴,

則,

又,即切點坐標為(1,0),

則函數在點(1,f(1))處的切線方程為,

即,

故答案為:.【點睛】本題主要考查導數的幾何意義,根據導數和切線斜率之間的關系是解決本題的關鍵.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)(i)詳見解析;(ii)會超過;詳見解析【解析】

(1)利用組合進行計算以及概率表示,可得結果.(2)(i)寫出X所有可能取值,并計算相對應的概率,列出表格可得結果.(ii)由(i)的條件結合7月與8月空氣質量所對應的概率,可得7月與8月經濟損失的期望和,最后7月、8月、9月經濟損失總額的數學期望與2.88萬元比較,可得結果.【詳解】(1)設ξ為選取的3天中空氣質量為優(yōu)的天數,則P(ξ=2),P(ξ=3),則這3天中空氣質量至少有2天為優(yōu)的概率為;(2)(i),,,X的分布列如下:X02201480P(ii)由(i)可得:E(X)=02201480302(元),故該企業(yè)9月的經濟損失的數學期望為30E(X),即30E(X)=9060元,設7月、8月每天因空氣質量造成的經濟損失為Y元,可得:,,,E(Y)=02201480320(元),所以該企業(yè)7月、8月這兩個月因空氣質量造成經濟損失總額的數學期望為320×(31+31)=19840(元),由19840+9060=28900>28800,即7月、8月、9月這三個月因空氣質量造成經濟損失總額的數學期望會超過2.88萬元.【點睛】本題考查概率中的分布列以及數學期望,屬基礎題。18、(1)(2){1,2}.【解析】

(1)求解導數,表示出,再利用的導數可求m的取值范圍;(2)表示出,結合二次函數知識求出的最小值,再結合導數及基本不等式求出的最值,從而可求正整數k的取值集合.【詳解】(1)因為,所以,所以,則,由題意可知,解得;(2)由(1)可知,,所以因為整理得,設,則,所以單調遞增,又因為,所以存在,使得,設,是關于開口向上的二次函數,則,設,則,令,則,所以單調遞增,因為,所以存在,使得,即,當時,,當時,,所以在上單調遞減,在上單調遞增,所以,因為,所以,又由題意可知,所以,解得,所以正整數k的取值集合為{1,2}.【點睛】本題主要考查導數的應用,利用導數研究極值問題一般轉化為導數的零點問題,恒成立問題要逐步消去參數,轉化為最值問題求解,適當構造函數是轉化的關鍵,本題綜合性較強,難度較大,側重考查數學抽象和邏輯推理的核心素養(yǎng).19、(1)(2)【解析】

(1)不妨設,,計算得到,根據面積得到,計算得到答案.(2)設,,,聯立方程利用韋達定理得到,,代入化簡計算得到答案.【詳解】(1)由題意不妨設,,則,.∵,∴,∴.又,∴,∴,,故的方程為.(2)設,,,則.∵,∴,設直線的方程為,聯立整理得.∵在上,∴,∴上式可化為.∴,,,∴,,∴.∴.【點睛】本題考查了橢圓方程,定值問題,意在考查學生的計算能力和綜合應用能力.20、(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗,理由見詳解.【解析】

(1)計算的頻率,并且與進行比較,判斷中位數落在的區(qū)間,然后根據頻率的計算方法,可得結果.(2)計算位于之外的零件中隨機抽取個的總數,寫出所有可能取值,并計算相對應的概率,列出分布列,計算期望,可得結果.(3)計算整箱的費用,根據余下零件個數服從二項分布,可得余下零件個數的期望值,然后計算整箱檢驗費用與賠償費用之和的期望值,進行比較,可得結果.【詳解】(1)尺寸在的頻率:尺寸在的頻率:且所以可知尺寸的中位數落在假設尺寸中位數為所以所以這個零件尺寸的中位數(2)尺寸在的個數為尺寸在的個數為的所有可能取值為1,2,3,4則,,所以的分布列為(3)二等品的概率為如果對余下的零件進行檢驗則整箱的檢驗費用為(元)余下二等品的個數期望值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論