版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),當時,恒成立,則的取值范圍為()A. B. C. D.2.有一改形塔幾何體由若千個正方體構成,構成方式如圖所示,上層正方體下底面的四個頂點是下層正方體上底面各邊的中點.已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是()A.8 B.7 C.6 D.43.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.24.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.45.將函數(shù)的圖象向右平移個周期后,所得圖象關于軸對稱,則的最小正值是()A. B. C. D.6.已知函數(shù)是奇函數(shù),且,若對,恒成立,則的取值范圍是()A. B. C. D.7.已知數(shù)列的首項,且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有8.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.9.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)10.甲乙丙丁四人中,甲說:我年紀最大,乙說:我年紀最大,丙說:乙年紀最大,丁說:我不是年紀最大的,若這四人中只有一個人說的是真話,則年紀最大的是()A.甲 B.乙 C.丙 D.丁11.設為銳角,若,則的值為()A. B. C. D.12.已知點是雙曲線上一點,若點到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.14.已知正方形邊長為,空間中的動點滿足,,則三棱錐體積的最大值是______.15.若四棱錐的側面內(nèi)有一動點Q,已知Q到底面的距離與Q到點P的距離之比為正常數(shù)k,且動點Q的軌跡是拋物線,則當二面角平面角的大小為時,k的值為______.16.點是曲線()圖象上的一個定點,過點的切線方程為,則實數(shù)k的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,.(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)的三個內(nèi)角、、所對邊分別為、、,若且,求面積的取值范圍.18.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.19.(12分)已知數(shù)列是公比為正數(shù)的等比數(shù)列,其前項和為,滿足,且成等差數(shù)列.(1)求的通項公式;(2)若數(shù)列滿足,求的值.20.(12分)已知曲線:和:(為參數(shù)).以原點為極點,軸的正半軸為極軸,建立極坐標系,且兩種坐標系中取相同的長度單位.(1)求曲線的直角坐標方程和的方程化為極坐標方程;(2)設與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.21.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.22.(10分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數(shù)k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數(shù)k的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
分析可得,顯然在上恒成立,只需討論時的情況即可,,然后構造函數(shù),結合的單調(diào)性,不等式等價于,進而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當時,等價于,因為,所以.設,由,顯然在上單調(diào)遞增,因為,所以等價于,即,則.設,則.令,解得,易得在上單調(diào)遞增,在上單調(diào)遞減,從而,故.故選:A.【點睛】本題考查了不等式恒成立問題,利用函數(shù)單調(diào)性是解決本題的關鍵,考查了學生的推理能力,屬于基礎題.2、A【解析】
則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時該塔形中正方體的個數(shù)的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是8.故選:A.【點睛】本小題主要考查正方體有關計算,屬于基礎題.3、A【解析】
求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.4、C【解析】
由正項等比數(shù)列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.【點睛】本題考查了等比數(shù)列基本量的求法,屬基礎題.5、D【解析】
由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導公式得到關于的方程,對賦值即可求解.【詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個周期后的解析式為,因為函數(shù)的圖象關于軸對稱,所以,即,所以當時,有最小正值為.故選:D【點睛】本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導公式及正余弦函數(shù)的性質;熟練掌握誘導公式和正余弦函數(shù)的性質是求解本題的關鍵;屬于中檔題、??碱}型.6、A【解析】
先根據(jù)函數(shù)奇偶性求得,利用導數(shù)判斷函數(shù)單調(diào)性,利用函數(shù)單調(diào)性求解不等式即可.【詳解】因為函數(shù)是奇函數(shù),所以函數(shù)是偶函數(shù).,即,又,所以,.函數(shù)的定義域為,所以,則函數(shù)在上為單調(diào)遞增函數(shù).又在上,,所以為偶函數(shù),且在上單調(diào)遞增.由,可得,對恒成立,則,對恒成立,,得,所以的取值范圍是.故選:A.【點睛】本題考查利用函數(shù)單調(diào)性求解不等式,根據(jù)方程組法求函數(shù)解析式,利用導數(shù)判斷函數(shù)單調(diào)性,屬壓軸題.7、C【解析】
根據(jù)等差數(shù)列和等比數(shù)列的定義進行判斷即可.【詳解】A:當時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當時,因此有常數(shù),因此是等差數(shù)列,因此當不是等差數(shù)列時,一定有,故本說法正確;D:當時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎題.8、A【解析】
將已知條件轉化為的形式,由此確定數(shù)列為的項.【詳解】由于等差數(shù)列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數(shù)列的基本量計算,屬于基礎題.9、C【解析】
利用導數(shù)求得在上遞增,結合與圖象,判斷出的大小關系,由此比較出的大小關系.【詳解】因為,所以在上單調(diào)遞增;在同一坐標系中作與圖象,,可得,故.故選:C【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.10、C【解析】
分別假設甲乙丙丁說的是真話,結合其他人的說法,看是否只有一個說的是真話,即可求得年紀最大者,即可求得答案.【詳解】①假設甲說的是真話,則年紀最大的是甲,那么乙說謊,丙也說謊,而丁說的是真話,而已知只有一個人說的是真話,故甲說的不是真話,年紀最大的不是甲;②假設乙說的是真話,則年紀最大的是乙,那么甲說謊,丙說真話,丁也說真話,而已知只有一個人說的是真話,故乙說謊,年紀最大的也不是乙;③假設丙說的是真話,則年紀最大的是乙,所以乙說真話,甲說謊,丁說的是真話,而已知只有一個人說的是真話,故丙在說謊,年紀最大的也不是乙;④假設丁說的是真話,則年紀最大的不是丁,而已知只有一個人說的是真話,那么甲也說謊,說明甲也不是年紀最大的,同時乙也說謊,說明乙也不是年紀最大的,年紀最大的只有一人,所以只有丙才是年紀最大的,故假設成立,年紀最大的是丙.綜上所述,年紀最大的是丙故選:C.【點睛】本題考查合情推理,解題時可從一種情形出發(fā),推理出矛盾的結論,說明這種情形不會發(fā)生,考查了分析能力和推理能力,屬于中檔題.11、D【解析】
用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關鍵是找出已知角和未知角之間的聯(lián)系.12、A【解析】
設點的坐標為,代入橢圓方程可得,然后分別求出點到兩條漸近線的距離,由距離之積為,并結合,可得到的齊次方程,進而可求出離心率的值.【詳解】設點的坐標為,有,得.雙曲線的兩條漸近線方程為和,則點到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.【點睛】本題考查雙曲線的離心率,構造的齊次方程是解決本題的關鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知可得,結合雙曲線的定義可知,結合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質.本題的關鍵是根據(jù)幾何關系,分析出.關于圓錐曲線的問題,一般如果能結合幾何性質,可大大減少計算量.14、【解析】
以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標系,設點,根據(jù)題中條件得出,進而可求出的最大值,由此能求出三棱錐體積的最大值.【詳解】以為原點,為軸,為軸,過作平面的垂線為軸建立空間直角坐標系,則,,,設點,空間中的動點滿足,,所以,整理得,,當,時,取最大值,所以,三棱錐的體積為.因此,三棱錐體積的最大值為.故答案為:.【點睛】本題考查三棱錐體積的最大值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.15、【解析】
二面角平面角為,點Q到底面的距離為,點Q到定直線得距離為d,則.再由點Q到底面的距離與到點P的距離之比為正常數(shù)k,可得,由此可得,則由可求k值.【詳解】解:如圖,設二面角平面角為,點Q到底面的距離為,點Q到定直線的距離為d,則,即.∵點Q到底面的距離與到點P的距離之比為正常數(shù)k,∴,則,∵動點Q的軌跡是拋物線,∴,即則.∴二面角的平面角的余弦值為解得:().故答案為:.【點睛】本題考查了四棱錐的結構特征,由四棱錐的側面與底面的夾角求參數(shù)值,屬于中檔題.16、1【解析】
求出導函數(shù),由切線斜率為4即導數(shù)為4求出切點橫坐標,再由切線方程得縱坐標后可求得.【詳解】設,由題意,∴,,,即,∴,.故答案為:1.【點睛】本題考查導數(shù)的幾何意義,函數(shù)圖象某點處的切線的斜率就是該點處導數(shù)值.本題屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用三角恒等變換思想化簡函數(shù)的解析式為,然后解不等式,可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由求得,利用余弦定理結合基本不等式求出的取值范圍,再結合三角形的面積公式可求得面積的取值范圍.【詳解】(1),解不等式,解得.因此,函數(shù)的單調(diào)遞增區(qū)間為;(2)由題意,則,,,,解得.由余弦定理得,又,,當且僅當時取等號,所以,的面積.【點睛】本題考查正弦型函數(shù)單調(diào)區(qū)間的求解,同時也考查了三角形面積取值范圍的計算,涉及余弦定理和基本不等式的應用,考查計算能力,屬于中等題.18、.【解析】試題分析:,所以.試題解析:B.因為,所以.19、(1)(2)【解析】
(1)由公比表示出,由成等差數(shù)列可求得,從而數(shù)列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數(shù)列的前項和公式可求解.【詳解】(1)∵是等比數(shù)列,且成等差數(shù)列∴,即∴,解得:或∵,∴∵∴(2)∵∴【點睛】本題考查等比數(shù)列的通項公式,考查并項求和法及等差數(shù)列的項和公式.本題求數(shù)列通項公式所用方法為基本量法,求和是用并項求和法.數(shù)列的求和除公式法外,還有錯位相關法、裂項相消法、分組(并項)求和法等等.20、(1),;(2)1.【解析】
(1)利用正弦的和角公式,結合極坐標化為直角坐標的公式,即可求得曲線的直角坐標方程;先寫出曲線的普通方程,再利用公式化簡為極坐標即可;(2)先求出的直角坐標,據(jù)此求得中點的直角坐標,將其轉化為極坐標,聯(lián)立曲線的極坐標方程,即可求得兩點的極坐標,則距離可解.【詳解】(1):可整理為,利用公式可得其直角坐標方程為:,:的普通方程為,利用公式可得其極坐標方程為(2)由(1)可得的直角坐標方程為,故容易得,,∴,∴的極坐標方程為,把代入得,.把代入得,.∴,即,兩點間的距離為1.【點睛】本題考查極坐標方程和直角坐標方程之間的轉化,涉及參數(shù)方程轉化為普通方程,以及在極坐標系中求兩點之間的距離,屬綜合基礎題.21、(1);(2)1.【解析】
(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結合范圍A∈(0,π),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度豬場租賃與農(nóng)業(yè)保險配套服務合同
- 二零二五年度知識產(chǎn)權法律服務合同種類及合同履行監(jiān)督
- 二零二五年度國際物流供應鏈管理服務合同
- 舞蹈雙十一活動方案策劃
- 安全生產(chǎn)活動方案
- 應聘體能教練簡歷
- 大班科學活動:神奇的鹽
- 2025施工安全合同模板
- 2025商務英語經(jīng)驗商務英語合同的語言特色 備考資料
- 【七年級下冊地理湘教版53】第六章 認識大洲 全練版:第三節(jié) 美洲
- 2025年河北供水有限責任公司招聘筆試參考題庫含答案解析
- 《材料分析測試技術》全套教學課件
- 人教版8年級上英語各單元語法課件大全
- (完整版)形式發(fā)票模版(國際件通用)
- 武漢東湖賓館建設項目委托代建合同
- 安徽大學大學生素質教育學分認定辦法
- 巴布亞新幾內(nèi)亞離網(wǎng)光儲微網(wǎng)供電方案
- 高度限位裝置類型及原理
- 中文版gcs electrospeed ii manual apri rev8v00印刷稿修改版
- 新生兒預防接種護理質量考核標準
- 除氧器出水溶解氧不合格的原因有哪些
評論
0/150
提交評論