版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為了進一步提升駕駛人交通安全文明意識,駕考新規(guī)要求駕校學員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導交通.現(xiàn)有甲、乙等5名駕校學員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種2.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.3.框圖與程序是解決數(shù)學問題的重要手段,實際生活中的一些問題在抽象為數(shù)學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數(shù)據(jù)的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,4.我國古代數(shù)學著作《九章算術》有如下問題:“今有蒲生一日,長三尺莞生一日,長一尺蒲生日自半,莞生日自倍.問幾何日而長倍?”意思是:“今有蒲草第天長高尺,蕪草第天長高尺以后,蒲草每天長高前一天的一半,蕪草每天長高前一天的倍.問第幾天莞草是蒲草的二倍?”你認為莞草是蒲草的二倍長所需要的天數(shù)是()(結果采取“只入不舍”的原則取整數(shù),相關數(shù)據(jù):,)A. B. C. D.5.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.6.已知函數(shù),若時,恒成立,則實數(shù)的值為()A. B. C. D.7.以下兩個圖表是2019年初的4個月我國四大城市的居民消費價格指數(shù)(上一年同月)變化圖表,則以下說法錯誤的是()(注:圖表一每個城市的條形圖從左到右依次是1、2、3、4月份;圖表二每個月份的條形圖從左到右四個城市依次是北京、天津、上海、重慶)A.3月份四個城市之間的居民消費價格指數(shù)與其它月份相比增長幅度較為平均B.4月份僅有三個城市居民消費價格指數(shù)超過102C.四個月的數(shù)據(jù)顯示北京市的居民消費價格指數(shù)增長幅度波動較小D.僅有天津市從年初開始居民消費價格指數(shù)的增長呈上升趨勢8.一個幾何體的三視圖如圖所示,其中正視圖是一個正三角形,則這個幾何體的體積為()A. B. C. D.9.設x、y、z是空間中不同的直線或平面,對下列四種情形:①x、y、z均為直線;②x、y是直線,z是平面;③z是直線,x、y是平面;④x、y、z均為平面.其中使“且”為真命題的是()A.③④ B.①③ C.②③ D.①②10.已知集合,,若AB,則實數(shù)的取值范圍是()A. B. C. D.11.如圖所示,已知雙曲線的右焦點為,雙曲線的右支上一點,它關于原點的對稱點為,滿足,且,則雙曲線的離心率是().A. B. C. D.12.已知,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知“在中,”,類比以上正弦定理,“在三棱錐中,側棱與平面所成的角為、與平面所成的角為,則________.14.如圖所示,直角坐標系中網(wǎng)格小正方形的邊長為1,若向量、、滿足,則實數(shù)的值為_______.15.的展開式中,的系數(shù)為_______(用數(shù)字作答).16.各項均為正數(shù)的等比數(shù)列中,為其前項和,若,且,則公比的值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,已知點,曲線:(為參數(shù))以原點為極點,軸正半軸建立極坐標系,直線的極坐標方程為.(Ⅰ)判斷點與直線的位置關系并說明理由;(Ⅱ)設直線與曲線的兩個交點分別為,,求的值.18.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標系.(1)求曲線的極坐標方程,并說明其表示什么軌跡;(2)若直線的極坐標方程為,求曲線上的點到直線的最大距離.19.(12分)已知數(shù)列和,前項和為,且,是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.20.(12分)如圖,在四棱錐中,平面,底面是矩形,,,分別是,的中點.(Ⅰ)求證:平面;(Ⅱ)設,求三棱錐的體積.21.(12分)已知數(shù)列的前n項和,是等差數(shù)列,且.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)令.求數(shù)列的前n項和.22.(10分)在銳角中,分別是角的對邊,,,且.(1)求角的大?。唬?)求函數(shù)的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先將甲、乙兩人看作一個整體,當作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據(jù)分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.2、A【解析】
根據(jù)奇偶性定義和性質可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結果.【詳解】為定義在上的偶函數(shù),圖象關于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數(shù)的奇偶性和單調性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關鍵是能夠利用函數(shù)單調性將函數(shù)值的大小關系轉化為自變量的大小關系,從而利用分離變量法來處理恒成立問題.3、A【解析】
依題意問題是,然后按直到型驗證即可.【詳解】根據(jù)題意為了計算7個數(shù)的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.4、C【解析】
由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長度,進而可得:,解出即可得出.【詳解】由題意可得莞草與蒲草第n天的長度分別為據(jù)題意得:,解得2n=12,∴n21.故選:C.【點睛】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.5、B【解析】
由,,三點共線,可得,轉化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.6、D【解析】
通過分析函數(shù)與的圖象,得到兩函數(shù)必須有相同的零點,解方程組即得解.【詳解】如圖所示,函數(shù)與的圖象,因為時,恒成立,于是兩函數(shù)必須有相同的零點,所以,解得.故選:D【點睛】本題主要考查函數(shù)的圖象的綜合應用和函數(shù)的零點問題,考查不等式的恒成立問題,意在考查學生對這些知識的理解掌握水平.7、D【解析】
采用逐一驗證法,根據(jù)圖表,可得結果.【詳解】A正確,從圖表二可知,3月份四個城市的居民消費價格指數(shù)相差不大B正確,從圖表二可知,4月份只有北京市居民消費價格指數(shù)低于102C正確,從圖表一中可知,只有北京市4個月的居民消費價格指數(shù)相差不大D錯誤,從圖表一可知上海市也是從年初開始居民消費價格指數(shù)的增長呈上升趨勢故選:D【點睛】本題考查圖表的認識,審清題意,細心觀察,屬基礎題.8、C【解析】
由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出底面面積,代入錐體體積公式,可得答案.【詳解】由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,其底面面積,高,故體積,故選:.【點睛】本題考查的知識點是由三視圖求幾何體的體積,解決本題的關鍵是得到該幾何體的形狀.9、C【解析】
①舉反例,如直線x、y、z位于正方體的三條共點棱時②用垂直于同一平面的兩直線平行判斷.③用垂直于同一直線的兩平面平行判斷.④舉例,如x、y、z位于正方體的三個共點側面時.【詳解】①當直線x、y、z位于正方體的三條共點棱時,不正確;②因為垂直于同一平面的兩直線平行,正確;③因為垂直于同一直線的兩平面平行,正確;④如x、y、z位于正方體的三個共點側面時,不正確.故選:C.【點睛】此題考查立體幾何中線面關系,選擇題一般可通過特殊值法進行排除,屬于簡單題目.10、D【解析】
先化簡,再根據(jù),且AB求解.【詳解】因為,又因為,且AB,所以.故選:D【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.11、C【解析】
易得,,又,平方計算即可得到答案.【詳解】設雙曲線C的左焦點為E,易得為平行四邊形,所以,又,故,,,所以,即,故離心率為.故選:C.【點睛】本題考查求雙曲線離心率的問題,關鍵是建立的方程或不等關系,是一道中檔題.12、D【解析】
根據(jù)指數(shù)函數(shù)的單調性,即當?shù)讛?shù)大于1時單調遞增,當?shù)讛?shù)大于零小于1時單調遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數(shù),又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【點睛】這個題目考查的是應用不等式的性質和指對函數(shù)的單調性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質得到大小關系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關系.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
類比,三角形邊長類比三棱錐各面的面積,三角形內(nèi)角類比三棱錐中側棱與面所成角.【詳解】,故,【點睛】本題考查類比推理.類比正弦定理可得,類比時有結構類比,方法類比等.14、【解析】
根據(jù)圖示分析出、、的坐標表示,然后根據(jù)坐標形式下向量的數(shù)量積為零計算出的取值.【詳解】由圖可知:,所以,又因為,所以,所以.故答案為:.【點睛】本題考查向量的坐標表示以及坐標形式下向量的數(shù)量積運算,難度較易.已知,若,則有.15、60【解析】
根據(jù)二項式定理展開式通項,即可求得的系數(shù).【詳解】因為,所以,則所求項的系數(shù)為.故答案為:60【點睛】本題考查了二項展開式通項公式的應用,指定項系數(shù)的求法,屬于基礎題.16、【解析】
將已知由前n項和定義整理為,再由等比數(shù)列性質求得公比,最后由數(shù)列各項均為正數(shù),舍根得解.【詳解】因為即又等比數(shù)列各項均為正數(shù),故故答案為:【點睛】本題考查在等比數(shù)列中由前n項和關系求公比,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)點在直線上;見解析(Ⅱ)【解析】
(Ⅰ)直線:,即,所以直線的直角坐標方程為,因為,所以點在直線上;(Ⅱ)根據(jù)直線的參數(shù)方程中參數(shù)的幾何意義可得.【詳解】(Ⅰ)直線:,即,所以直線的直角坐標方程為,因為,所以點在直線上;(Ⅱ)直線的參數(shù)方程為(為參數(shù)),曲線的普通方程為,將直線的參數(shù)方程代入曲線的普通方程得,設兩根為,,所以,,故與異號,所以,,所以.【點睛】本題考查在極坐標參數(shù)方程中方程互化,還考查了直線的參數(shù)方程中參數(shù)的幾何意義,屬于中檔題.18、(1),表示圓心為,半徑為的圓;(2)【解析】
(1)根據(jù)參數(shù)得到直角坐標系方程,再轉化為極坐標方程得到答案.(2)直線方程為,計算圓心到直線的距離加上半徑得到答案.【詳解】(1),即,化簡得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點到直線的最大距離為.【點睛】本題考查了參數(shù)方程,極坐標方程,直線和圓的距離的最值,意在考查學生的計算能力和應用能力.19、(1),;(2).【解析】
(1)令求出的值,然后由,得出,然后檢驗是否符合在時的表達式,即可得出數(shù)列的通項公式,并設數(shù)列的公比為,根據(jù)題意列出和的方程組,解出這兩個量,然后利用等比數(shù)列的通項公式可求出;(2)求出數(shù)列的前項和,然后利用分組求和法可求出.【詳解】(1)當時,,當時,.也適合上式,所以,.設數(shù)列的公比為,則,由,兩式相除得,,解得,,;(2)設數(shù)列的前項和為,則,.【點睛】本題考查利用求,同時也考查了等比數(shù)列通項的計算,以及分組求和法的應用,考查計算能力,屬于中等題.20、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)取中點,連,,根據(jù)平行四邊形,可得,進而證得平面平面,利用面面垂直的性質,得平面,又由,即可得到平面.(Ⅱ)根據(jù)三棱錐的體積公式,利用等積法,即可求解.【詳解】(Ⅰ)取中點,連,,由,可得,可得是平行四邊形,則,又平面,∴平面平面,∵平面,平面,∴平面平面,∵,是中點,則,而平面平面,而,∴平面.(Ⅱ)根據(jù)三棱錐的體積公式,得.【點睛】本題主要考查了空間中線面位置關系的判定與證明,以及利用“等體積法”求解三棱錐的體積,其中解答中熟記線面位置關系的判定定理和性質定理,以及合理利用“等體積法”求解是解答的關鍵,著重考查了推理與論證能力,屬于基礎題.21、(Ⅰ);(Ⅱ
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑工程施工現(xiàn)場安全管理制度
- 投資咨詢與顧問管理制度
- 幼兒園食堂采購制度
- 《常見的動物》講義
- 學習壓力-主題班會
- 人教部編版四年級語文上冊第24課《延安我把你追尋》精美課件
- 2024年拉薩客運上崗證條件
- 2024年株洲公交車從業(yè)資格證考試
- 2024年孝感客運從業(yè)資格模擬考試
- 2024年湘西客運從業(yè)資格證考試題
- 火力發(fā)電企業(yè)作業(yè)活動風險分級管控清單(參考)
- 《鍋爐水容積測試技術規(guī)范》團體標準
- 民法典合同編之保證合同實務解讀PPT
- 全國第四輪學科評估PPT幻燈片課件(PPT 24頁)
- 子宮內(nèi)膜息肉-PPT課件
- 橋梁施工各工序質量控制措施
- 保安隊排班表
- 包頭醫(yī)學院新開課程申請表
- (精心整理)初中物理串聯(lián)分壓和并聯(lián)分流精練
- 道路開口工程施工設計方案
- 蛋雞養(yǎng)殖場管理制度管理辦法
評論
0/150
提交評論