2023屆江西省大余縣九年級數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第1頁
2023屆江西省大余縣九年級數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第2頁
2023屆江西省大余縣九年級數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第3頁
2023屆江西省大余縣九年級數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第4頁
2023屆江西省大余縣九年級數(shù)學第一學期期末質量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.電影《流浪地球》一上映就獲得追捧,第一天票房收入約8億元,第三天票房收入達到了11.52億元,設第一天到第三天票房收入平均每天增長的百分率為x,則可列方程()A.8(1+x)=11.52 B.8(1+2x)=11.52C.8(1+x)=11.52 D.8(1﹣x)=11.522.如圖,在平面直角坐標系內,正方形OABC的頂點A,B在第一象限內,且點A,B在反比例函數(shù)y=(k≠0)的圖象上,點C在第四象限內.其中,點A的縱坐標為2,則k的值為()A.2﹣2 B.2﹣2 C.4﹣4 D.4﹣43.若一次函數(shù)的圖象不經過第二象限,則關于的方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.無實數(shù)根 D.無法確定4.如圖,點B、D、C是⊙O上的點,∠BDC=130°,則∠BOC是()A.100° B.110° C.120° D.130°5.如圖,在中,,,,以邊的中點為圓心作半圓,使與半圓相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是()A.8 B.9 C.10 D.126.如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上,則tan∠ABC的值為()A. B. C. D.7.《孫子算經》是我國古代重要的數(shù)學著作,其有題譯文如下:“有一根竹竿在太陽下的影子長尺.同時立一根尺的小標桿,它的影長是尺。如圖所示,則可求得這根竹竿的長度為()尺A. B. C. D.8.如圖,已知點在反比例函數(shù)上,軸,垂足為點,且的面積為,則的值為()A. B. C. D.9.函數(shù)在同一直角坐標系內的圖象大致是()A. B. C. D.10.方程﹣1=的解是()A.﹣1 B.2或﹣1 C.﹣2或3 D.3二、填空題(每小題3分,共24分)11.如圖,在平面直角坐標系中,點A的坐標為,反比例函數(shù)的圖象經過線段OA的中點B,則k=_____.12.一個不透明的袋子中裝有3個白球和若干個黑球,它們除顏色外,完全相同.從袋子中隨機摸出一球,記下顏色并放回,重復該試驗多次,發(fā)現(xiàn)得到白球的頻率穩(wěn)定在0.6,則可判斷袋子中黑球的個數(shù)為______.13.如圖,在半徑為5的⊙中,弦,是弦所對的優(yōu)弧上的動點,連接,過點作的垂線交射線于點,當是以為腰的等腰三角形時,線段的長為_____.14.根據(jù)下列統(tǒng)計圖,回答問題:該超市10月份的水果類銷售額___________11月份的水果類銷售額(請從“>”“=”或“<”中選一個填空).15.頂點在原點的二次函數(shù)圖象先向左平移1個單位長度,再向下平移2個單位長度后,所得的拋物線經過點(0,﹣3),則平移后拋物線相應的函數(shù)表達式為_____.16.如圖,在平面直角坐標系中,拋物線與軸的正半軸相交于點,其頂點為,將這條拋物線繞點旋轉后得到的拋物線與軸的負半軸相交于點,其頂點為,連接,,,,則四邊形的面積為__________;17.如圖,在邊長為2的正方形ABCD中,以點D為圓心,AD長為半徑畫,再以BC為直徑畫半圓,若陰影部分①的面積為S1,陰影部分②的面積為S2,則圖中S1﹣S2的值為_____.(結果保留π)18.如圖示,在中,,,,點在內部,且,連接,則的最小值等于______.三、解答題(共66分)19.(10分)如圖,拋物線與軸交于、兩點,與軸交于點,且,.(1)求拋物線的解析式;(2)已知拋物線上點的橫坐標為,在拋物線的對稱軸上是否存在點,使得的周長最???若存在,求出點的坐標;若不存在,請說明理由.20.(6分)新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.(1)求w與x之間的函數(shù)關系式;(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想賣得快.那么銷售單價應定為多少元?21.(6分)計劃開設以下課外活動項目:A一版畫、B一機器人、C一航模、D一園藝種植.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查(每位學生必須選且只能選一個項目),并將調查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:(1)這次被調查的學生共有人;扇形統(tǒng)計圖中,選“D一園藝種植”的學生人數(shù)所占圓心角的度數(shù)是°;(2)請你將條形統(tǒng)計圖補充完整;(3)若該校學生總數(shù)為1500人,試估計該校學生中最喜歡“機器人”和最喜歡“航?!表椖康目側藬?shù)22.(8分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.(1)求證:DF⊥AC;(2)若⊙O的半徑為4,∠CDF=1.5°,求陰影部分的面積.23.(8分)如圖所示,AD,BE是鈍角△ABC的邊BC,AC上的高,求證:.24.(8分)如圖,已知Rt△ABO,點B在軸上,∠ABO=90°,∠AOB=30°,OB=,反比例函數(shù)的圖象經過OA的中點C,交AB于點D.(1)求反比例函數(shù)的表達式;(2)求△OCD的面積;(3)點P是軸上的一個動點,請直接寫出使△OCP為直角三角形的點P坐標.25.(10分)如圖,AB是⊙O的直徑,BM切⊙O于點B,點P是⊙O上的一個動點(點P不與A,B兩點重合),連接AP,過點O作OQ∥AP交BM于點Q,過點P作PE⊥AB于點C,交QO的延長線于點E,連接PQ,OP.(1)求證:△BOQ≌△POQ;(2)若直徑AB的長為1.①當PE=時,四邊形BOPQ為正方形;②當PE=時,四邊形AEOP為菱形.26.(10分)已知關于的一元二次方程有兩個不相等的實數(shù)根,.(1)若為正整數(shù),求的值;(2)若,滿足,求的值.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】設平均每天票房的增長率為,根據(jù)第一天票房收入約8億元,第三天票房收入達到了11.52億元,即可得出關于的一元二次方程.【詳解】解:設平均每天票房的增長率為,根據(jù)題意得:.故選:C.【點睛】本題考查了由實際問題抽象出一元二次方程,找準等量關系,正確列出一元二次方程是解題的關鍵.2、B【分析】作AE⊥x軸于E,BF∥x軸,交AE于F,根據(jù)圖象上點的坐標特征得出A(,2),證得△AOE≌△BAF(AAS),得出OE=AF,AE=BF,即可得到B(+2,2-),根據(jù)系數(shù)k的幾何意義得到k=(+2)(2-),解得即可.【詳解】解:作AE⊥x軸于E,BF//x軸,交AE于F,∵∠OAE+∠BAF=90°=∠OAE+∠AOE,∴∠BAF=∠AOE,在△AOE和△BAF中∴△AOE≌△BAF(AAS),∴OE=AF,AE=BF,∵點A,B在反比例函數(shù)y=(k≠0)的圖象上,點A的縱坐標為2,∴A(,2),∴B(+2,2﹣),∴k=(+2)(2﹣),解得k=﹣2±2(負數(shù)舍去),∴k=2﹣2,故選:B.【點睛】本題考查了正方形的性質,全等三角形的性質與判定,反比例函數(shù)的圖象與性質,關鍵是構造全等三角形.3、A【分析】利用一次函數(shù)性質得出k>0,b≤0,再判斷出△=k2-4b>0,即可求解.【詳解】解:一次函數(shù)的圖象不經過第二象限,,,,方程有兩個不相等的實數(shù)根.故選.【點睛】本題考查的是一元二次方程的根的判別式,熟練掌握一次函數(shù)的圖像和一元二次方程根的判別式是解題的關鍵.4、A【分析】首先在優(yōu)弧上取點E,連接BE,CE,由點B、D、C是⊙O上的點,∠BDC=130°,即可求得∠E的度數(shù),然后由圓周角定理,即可求得答案.【詳解】解:在優(yōu)弧上取點E,連接BE,CE,如圖所示:

∵∠BDC=130°,

∴∠E=180°-∠BDC=50°,

∴∠BOC=2∠E=100°.

故選A.【點睛】此題考查了圓周角定理以及圓的內接四邊形的性質.此題難度不大,注意掌握輔助線的作法,注意掌握數(shù)形結合思想的應用.5、C【分析】如圖,設⊙O與BC相切于點E,連接OE,作OP2⊥AC垂足為P2交⊙O于Q2,此時垂線段OP2最短,P2Q2最小值為OQ2-OP2,如圖當Q2在AB邊上時,P2與A重合時,P2Q2最大值,由此不難解決問題.【詳解】解:如圖,設⊙O與BC相切于點E,連接OE,作OP2⊥AC垂足為P2交⊙O于Q2,

此時垂線段OP2最短,P2Q2最小值為OQ2-OP2,

∵AB=20,AC=8,BC=6,

∴AB2=AC2+BC2,∴∠C=90°,

∵∠OP2A=90°,∴OP2∥BC.

∵O為AB的中點,∴P2C=P2A,OP2=BC=2.又∵BC是⊙O的切線,∴∠OEB=90°,∴OE∥AC,又O為AB的中點,∴OE=AC=4=OQ2.

∴P2Q2最小值為OQ2-OP2=4-2=2,

如圖,當Q2在AB邊上時,P2與A重合時,P2Q2經過圓心,經過圓心的弦最長,

P2Q2最大值=AO+OQ2=5+4=9,

∴PQ長的最大值與最小值的和是20.

故選:C.【點睛】本題考查切線的性質,三角形中位線定理,勾股定理的逆定理以及平行線的判定等知識,解題的關鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考??碱}型.6、D【解析】如圖,∠ABC所在的直角三角形的對邊AD=3,鄰邊BD=4,所以,tan∠ABC=.故選D.7、B【分析】根據(jù)同一時刻物高與影長成正比可得出結論.【詳解】設竹竿的長度為x尺,∵太陽光為平行光,∴,解得x=45(尺)..故選:B.【點睛】本題考查的是相似三角形的應用,熟知同一時刻物高與影長成正比是解答此題的關鍵.8、C【分析】根據(jù)反比例函數(shù)中的比例系數(shù)k的幾何意義即可得出答案.【詳解】∵點在反比例函數(shù),的面積為故選:C.【點睛】本題主要考查反比例函數(shù)中的比例系數(shù)k的幾何意義,掌握反比例函數(shù)中的比例系數(shù)k的幾何意義是解題的關鍵.9、C【分析】根據(jù)a、b的符號,針對二次函數(shù)、一次函數(shù)的圖象位置,開口方向,分類討論,逐一排除.【詳解】當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象經過一、三或一、二、三或一、三、四象限,故A、D不正確;由B、C中二次函數(shù)的圖象可知,對稱軸x=->0,且a>0,則b<0,但B中,一次函數(shù)a>0,b>0,排除B.故選C.10、D【分析】找到最簡公分母,去分母后得到關于x的一元二次方程,求解后,再檢驗是否有增根問題可解.【詳解】解:去分母得2x﹣(x2﹣4)=x﹣2,整理得x2﹣x﹣6=0,解得x1=1,x2=-2,檢驗:當x=1時,x2﹣4≠0,所以x=1是原方程的解;當x=-2時,x2﹣4=0,所以x=2是原方程的增根,所以原方程的解為x=1.故選:D.【點睛】本題考查了可化為一元二次方程的分式方程的解法,解答完成后要對方程的根進行檢驗,判定是否有增根產生.二、填空題(每小題3分,共24分)11、-2【解析】由A,B是OA的中點,點B的坐標,把B的坐標代入關系式可求k的值.【詳解】∵A(-4,2),O(0,0),B是OA的中點,∴點B(-2,1),代入得:∴故答案為:-2【點睛】本題考查反比例函數(shù)圖象上點的坐標特征及線段中點坐標公式;根據(jù)中點坐標公式求出點B坐標,代入求k的值是本題的基本方法.12、2【分析】由摸到白球的頻率穩(wěn)定在0.6附近得出口袋中得到白色球的概率,進而求出黑球個數(shù)即可.【詳解】解:設黑球個數(shù)為:x個,∵摸到白色球的頻率穩(wěn)定在0.6左右,∴口袋中得到白色球的概率為0.6,∴,解得:x=2,故黑球的個數(shù)為2個.故答案為2.【點睛】此題主要考查了利用頻率估計概率,根據(jù)大量反復試驗下頻率穩(wěn)定值即概率得出是解題關鍵.13、8或【解析】根據(jù)題意,以為腰的等腰三角形有兩種情況,當AB=AP時,利用垂徑定理及相似三角形的性質列出比例關系求解即可,當AB=BP時,通過角度運算,得出BC=AB=8即可.【詳解】解:①當AB=AP時,如圖,連接OA、OB,延長AO交BP于點G,故AG⊥BP,過點O作OH⊥AB于點H,∵在同圓或等圓中,同弧所對的圓周角等于圓心角的一半,∴,由垂徑定理可知,∴,在Rt△OAH中,在Rt△CAP中,,且∴,在Rt△PAG與Rt△PCA中,∠GPA=∠APC,∠PGA=∠PAC,∴Rt△PAG∽Rt△PCA∴,則,∴;②當AB=BP時,如下圖所示,∠BAP=∠BPA,∴在Rt△PAC中,∠C=90°-∠BPA=90°-∠BAP=∠CAB,∴BC=AB=8故答案為8或【點睛】本題考查了圓的性質及圓周角定理、相似三角形的性質、等腰三角形的判定等知識點,綜合性較強,難度較大,解題的關鍵是靈活運用上述知識進行推理論證.14、>【分析】根據(jù)統(tǒng)計圖,分別求出該超市10月份的水果類銷售額與11月份的水果類銷售額,比較大小即可.【詳解】∵10月份的水果類銷售額為(萬元),11月份的水果類銷售額為(萬元),∴10月份的水果類銷售額>11月份的水果類銷售額.故答案是:>【點睛】本題主要考查從統(tǒng)計圖種提取信息,通過觀察統(tǒng)計圖,得到有用的信息,是解題的關鍵.15、y=﹣(x+1)2﹣2【分析】根據(jù)坐標平移規(guī)律可知平移后的頂點坐標為(﹣1,﹣2),進而可設二次函數(shù)為,再把點(0,﹣3)代入即可求解a的值,進而得平移后拋物線的函數(shù)表達式.【詳解】由題意可知,平移后的函數(shù)的頂點為(﹣1,﹣2),設平移后函數(shù)的解析式為,∵所得的拋物線經過點(0,﹣3),∴﹣3=a﹣2,解得a=﹣1,∴平移后函數(shù)的解析式為,故答案為.【點睛】本題考查坐標與圖形變化-平移,解題的關鍵是掌握坐標平移規(guī)律:“左右平移時,橫坐標左移減右移加,縱坐標不變;上下平移時,橫坐標不變,縱坐標上移加下移減”。16、32【分析】利用拋物線的解析式算出M的坐標和A的坐標,根據(jù)對稱算出B和N的坐標,再利用兩個三角形的面積公式計算和即可.【詳解】∵,∴M(2,-4),令,解得x1=0,x2=4,∴A(0,4),∵B,N分別關于原點O的對稱點是A,M,∴B(-4,-0),N(-2,4),∴AB=8,∴四邊形AMBN的面積為:2S△ABM=,故答案為:32.【點睛】本題考查二次函數(shù)的性質,關鍵在于利用對稱性得出坐標點.17、π【分析】如圖,設圖中③的面積為S1.構建方程組即可解決問題.【詳解】解:如圖,設圖中③的面積為S1.由題意:,可得S1﹣S2=π,故答案為π.【點睛】本題考查扇形的面積、正方形的性質等知識,解題的關鍵是學會利用參數(shù)構建方程組解決問題.18、【分析】首先判定直角三角形∠CAB=30°,∠ABC=60°,,然后根據(jù),得出∠ACB+∠PAC+∠PBC=∠APB=120°,定角定弦,點P的軌跡是以AB為弦,圓周角為120°的圓弧上,如圖所示,當點C、O、P在同一直線上時,CP最小,構建圓,利用勾股定理,即可得解.【詳解】∵,,,∴∴∠CAB=30°,∠ABC=60°∵,∠PAB+∠PAC=30°∴∠ACB+∠PAC+∠PBC=∠APB=120°∴定角定弦,點P的軌跡是以AB為弦,圓周角為120°的圓弧上,如圖所示,當點C、O、P在同一直線上時,CP最小∴CO⊥AB,∠COB=60°,∠ABO=30°∴OB=2,∠OBC=90°∴∴故答案為.【點睛】此題主要考查直角三角形中的動點綜合問題,解題關鍵是找到點P的位置.三、解答題(共66分)19、(1);(2)存在,點.【分析】(1)由題意先求出A、C的坐標,直接利用待定系數(shù)法即可求得拋物線的解析式;(2)根據(jù)題意轉化,BD的長是定值,要使的周長最小則有點、、在同一直線上,據(jù)此進行分析求解.【詳解】解:(1),點的坐標為.,點的坐標為.把,代入,得,解得.拋物線的解析式為.(2)存在.把代入,解得,,點的坐標為.點的橫線坐標為.故點的坐標為.如圖,設是拋物線對稱軸上的一點,連接、、、,,的周長等于,又的長是定值,點、、在同一直線上時,的周長最小,由、可得直線的解析式為,拋物線的對稱軸是,點的坐標為,在拋物線的對稱軸上存在點,使得的周長最小.【點睛】本題考查二次函數(shù)圖像性質的綜合問題,熟練掌握并利用利用待定系數(shù)法即可求出二次函數(shù)的解析式以及運用數(shù)形結合思維分析是解題的關鍵.20、(1)w=﹣2x2+480x﹣25600;(2)銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤1元(3)銷售單價應定為100元【解析】(1)用每件的利潤乘以銷售量即可得到每天的銷售利潤,即然后化為一般式即可;

(2)把(1)中的解析式進行配方得到頂點式然后根據(jù)二次函數(shù)的最值問題求解;

(3)求所對應的自變量的值,即解方程然后檢驗即可.【詳解】(1)w與x的函數(shù)關系式為:(2)∴當時,w有最大值.w最大值為1.答:銷售單價定為120元時,每天銷售利潤最大,最大銷售利潤1元.(3)當時,解得:∵想賣得快,不符合題意,應舍去.答:銷售單價應定為100元.21、(1)200;72(2)60(人),圖見解析(3)1050人.【分析】(1)由A類有20人,所占扇形的圓心角為36°,即可求得這次被調查的學生數(shù),再用360°乘以D人數(shù)占總人數(shù)的比例可得;(2)首先求得C項目對應人數(shù),即可補全統(tǒng)計圖;(3)總人數(shù)乘以樣本中B、C人數(shù)所占比例可得.【詳解】(1)∵A類有20人,所占扇形的圓心角為36°,∴這次被調查的學生共有:20÷=200(人);選“D一園藝種植”的學生人數(shù)所占圓心角的度數(shù)是360°×=72°,故答案為:200、72;(2)C項目對應人數(shù)為:200?20?80?40=60(人);補充如圖.(3)1500×=1050(人),答:估計該校學生中最喜歡“機器人”和最喜歡“航?!表椖康目側藬?shù)為1050人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?2、(1)證明見解析;(2).【分析】(1)連接,易得,由,易得,等量代換得,利用平行線的判定得,由切線的性質得,得出結論;(2)連接,利用(1)的結論得,易得,得出,利用扇形的面積公式和三角形的面積公式得出結論.【詳解】(1)證明:連接,,,∵AB=AC,∴∠ABC=∠ACB.∴∠ODB=∠ACB,∴OD∥AC.∵DF是⊙O的切線,∴DF⊥OD.∴DF⊥AC.(2)連結OE,∵DF⊥AC,∠CDF=1.5°.∴∠ABC=∠ACB=2.5°,∴∠BAC=45°.∵OA=OE,∴∠AOE=90°.的半徑為4,,,.【點睛】本題主要考查了切線的性質,扇形的面積與三角形的面積公式,圓周角定理等,作出適當?shù)妮o助線,利用切線性質和圓周角定理,數(shù)形結合是解答此題的關鍵.23、見解析.【分析】根據(jù)兩角相等的兩個三角形相似證明△ADC∽△BEC即可.【詳解】證明:∵AD,BE分別是BC,AC上的高∴∠D=∠E=90°又∠ACD=∠BCE(對頂角相等)∴△ADC∽△BEC∴.【點睛】本題考查了相似三角形的判定,熟練掌握形似三角形的判定方法是解答本題的關鍵.①有兩個對應角相等的三角形相;②有兩個對應邊的比相等,且其夾角相等,則兩個三角形相似;③三組對應邊的比相等,則兩個三角形相似.24、(1);(2)面積為;(3)P(2,0)或(4,0)【分析】(1)解直角三角形求得AB,作CE⊥OB于E,根據(jù)平行線分線段成比例定理和三角形中位線的性質求得C的坐標,然后根據(jù)待定系數(shù)法即可求得反比例函數(shù)的解析式;(2)補形法,求出各點坐標,S△OCD=S△AOB-S△ACD-S△OBD;(3)分兩種情形:①∠OPC=90°.②∠OCP=90°,分別求解即可.【詳解】解:(1)∵∠ABO=90°,∠AOB=30°,OB=,∴AB=OB=2,作CE⊥OB于E,

∵∠ABO=90°,

∴CE∥AB,

∴OC=AC,

∴OE=BE=OB=,CE=AB=1,∴C(,1),∵反比例函數(shù)(x>0)的圖象經過OA的中點C,∴1=,∴k=,∴反比例函數(shù)的關系式為;(2)∵OB=,∴D的橫坐標為,代入得,y=,∴D(,),∴BD=,∵AB=,∴AD=,∴S△OCD=S△AOB-S△ACD-S△OBD=OB?AB-AD?BE-BD?OB=(3)當∠OPC=90°時,點P的橫坐標與點C的橫坐標相等,C(2,2),

∴P(2,0).

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論