2023屆寧夏中學寧縣數(shù)學九年級第一學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
2023屆寧夏中學寧縣數(shù)學九年級第一學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
2023屆寧夏中學寧縣數(shù)學九年級第一學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
2023屆寧夏中學寧縣數(shù)學九年級第一學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
2023屆寧夏中學寧縣數(shù)學九年級第一學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.二次函數(shù)的圖象如圖所示,對稱軸為直線,下列結(jié)論不正確的是()A.B.當時,頂點的坐標為C.當時,D.當時,y隨x的增大而增大2.如果(m+2)x|m|+mx-1=0是關于x的一元二次方程,那么m的值為()A.2或-2 B.2 C.-2 D.03.下列事件中,是隨機事件的是()A.兩條直線被第三條直線所截,同位角相等B.任意一個四邊形的外角和等于360°C.早上太陽從西方升起D.平行四邊形是中心對稱圖形4.下列圖案中,是中心對稱圖形的是()A. B.

C. D.5.能說明命題“關于的方程一定有實數(shù)根”是假命題的反例為()A. B. C. D.6.如圖,轉(zhuǎn)盤的紅、黃、藍、紫四個扇形區(qū)域的圓心角分別記為,,,.自由轉(zhuǎn)動轉(zhuǎn)盤,則下面說法錯誤的是()A.若,則指針落在紅色區(qū)域的概率大于0.25B.若,則指針落在紅色區(qū)域的概率大于0.5C.若,則指針落在紅色或黃色區(qū)域的概率和為0.5D.若,則指針落在紅色或黃色區(qū)域的概率和為0.57.拋物線y=x2+kx﹣1與x軸交點的個數(shù)為()A.0個 B.1個 C.2個 D.以上都不對8.如圖,在中,,,平分,是的中點,若,則的長為()A.4 B. C. D.9.矩形、菱形、正方形都具有的性質(zhì)是()A.對角線相等 B.對角線互相平分 C.對角線互相垂直 D.對角線互相平分且相等10.如圖,一艘輪船從位于燈塔C的北偏東60°方向,距離燈塔60nmile的小島A出發(fā),沿正南方向航行一段時間后,到達位于燈塔C的南偏東45°方向上的B處,這時輪船B與小島A的距離是()A.nmile B.60nmile C.120nmile D.nmile二、填空題(每小題3分,共24分)11.將邊長為的正方形繞點按順時針方向旋轉(zhuǎn)到的位置(如圖),使得點落在對角線上,與相交于點,則=_________.(結(jié)果保留根號)12.如圖,在寬為20m,長為32m的矩形地面上修筑同樣寬的道路(圖中陰影部分),余下的部分種上草坪.要使草坪的面積為540m2,則道路的寬為.13.如圖,Rt△ABC中,∠A=90°,CD平分∠ACB交AB于點D,O是BC上一點,經(jīng)過C、D兩點的⊙O分別交AC、BC于點E、F,AD=,∠ADC=60°,則劣弧的長為_____.14.請寫出一個符合以下兩個條件的反比例函數(shù)的表達式:___________________.①圖象位于第二、四象限;②如果過圖象上任意一點A作AB⊥x軸于點B,作AC⊥y軸于點C,那么得到的矩形ABOC的面積小于1.15.如圖,直角三角形中,,,,在線段上取一點,作交于點,現(xiàn)將沿折疊,使點落在線段上,對應點記為;的中點的對應點記為.若,則______.16.在一個不透明的盒子里裝有除顏色外其余均相同的2個黃色乒乓球和若干個白色乒乓球,從盒子里隨機摸出一個乒乓球,摸到白色乒乓球的概率為,那么盒子內(nèi)白色乒乓球的個數(shù)為_____.17.如圖,點是反比例函數(shù)的圖象上一點,直線過點與軸交于點,與軸交于點.過點做軸于點,連接,若的面積為,則的面積為_______.18.我們將等腰三角形腰長與底邊長的差的絕對值稱為該三角形的“邊長正度值”,若等腰三角形腰長為5,“邊長正度值”為3,那么這個等腰三角形底角的余弦值等于__________.三、解答題(共66分)19.(10分)某店以每件60元的進價購進某種商品,原來按每件100元的售價出售,一天可售出50件;后經(jīng)市場調(diào)查,發(fā)現(xiàn)這種商品每件售價每降低1元,其銷量可增加5件.(1)該店銷售該商品原來一天可獲利潤元.(2)設后來該商品每件售價降價元,此店一天可獲利潤元.①若此店為了盡量多地增加該商品的銷售量,且一天仍能獲利2625元,則每件商品的售價應降價多少元?②求與之間的函數(shù)關系式,當該商品每件售價為多少元時,該店一天所獲利潤最大?并求最大利潤值.20.(6分)已知,求代數(shù)式的值.21.(6分)已知:為的直徑,,為上一動點(不與、重合).(1)如圖1,若平分,連接交于點.①求證:;②若,求的長;(2)如圖2,若繞點順時針旋轉(zhuǎn)得,連接.求證:為的切線.22.(8分)如圖,直線與雙曲線相交于點A,且,將直線向左平移一個單位后與雙曲線相交于點B,與x軸、y軸分別交于C、D兩點.(1)求直線的解析式及k的值;(2)連結(jié)、,求的面積.23.(8分)化簡并求值:,其中m滿足m2-m-2=0.24.(8分)如圖,⊙O是△ABC的外接圓,AB是直徑,OD⊥AC,垂足為D點,直線OD與⊙O相交于E,F(xiàn)兩點,P是⊙O外一點,P在直線OD上,連接PA,PB,PC,且滿足∠PCA=∠ABC(1)求證:PA=PC;(2)求證:PA是⊙O的切線;(3)若BC=8,,求DE的長.25.(10分)在一個不透明的口袋中裝有3張相同的紙牌,它們分別標有數(shù)字3,﹣1,2,隨機摸出一張紙牌不放回,記錄其標有的數(shù)字為x,再隨機摸取一張紙牌,記錄其標有的數(shù)字為y,這樣就確定點P的一個坐標為(x,y)(1)用列表或畫樹狀圖的方法寫出點P的所有可能坐標;(2)寫出點P落在雙曲線上的概率.26.(10分)已知二次函數(shù).(1)在平面直角坐標系中畫出該函數(shù)的圖象;(2)當0≤x≤3時,結(jié)合函數(shù)圖象,直接寫出的取值范圍.

參考答案一、選擇題(每小題3分,共30分)1、C【解析】根據(jù)對稱軸公式和二次函數(shù)的性質(zhì),結(jié)合選項即可得到答案.【詳解】解:∵二次函數(shù)∴對稱軸為直線∴,故A選項正確;當時,∴頂點的坐標為,故B選項正確;當時,由圖象知此時即∴,故C選項不正確;∵對稱軸為直線且圖象開口向上∴當時,y隨x的增大而增大,故D選項正確;故選C.【點睛】本題考查二次函數(shù),解題的關鍵是熟練掌握二次函數(shù).2、B【分析】根據(jù)一元二次方程的定義可得:|m|=1,且m+1≠0,再解即可.【詳解】解:由題意得:|m|=1,且m+1≠0,

解得:m=1.

故選:B.【點睛】此題主要考查了一元二次方程的定義,關鍵是掌握“未知數(shù)的最高次數(shù)是1”;“二次項的系數(shù)不等于0”.3、A【分析】根據(jù)隨機事件的概念對每一事件進行分析.【詳解】選項A,只有當兩條直線為平行線時,同位角才相等,故不確定為隨機事件.選項B,不可能事件.選項C,不可能事件選項D,必然事件.故選A【點睛】本題考查了隨機事件的概念.4、D【分析】根據(jù)中心對稱圖形的定義逐一進行分析判斷即可.【詳解】A、不是中心對稱圖形,故不符合題意;B、不是中心對稱圖形,故不符合題意;C、不是中心對稱圖形,故不符合題意;D、是中心對稱圖形,故符合題意,故選D.【點睛】本題考查了中心對稱圖形的識別,熟練掌握中心對稱圖形的概念是解題的關鍵.5、D【分析】利用m=5使方程x2-4x+m=0沒有實數(shù)解,從而可把m=5作為說明命題“關于x的方程x2-4x+m=0一定有實數(shù)根”是假命題的反例.【詳解】當m=5時,方程變形為x2-4x+m=5=0,因為△=(-4)2-4×5<0,所以方程沒有實數(shù)解,所以m=5可作為說明命題“關于x的方程x2-4x+m=0一定有實數(shù)根”是假命題的反例.故選D.【點睛】本題考查了命題與定理:命題的“真”“假”是就命題的內(nèi)容而言.任何一個命題非真即假.要說明一個命題的正確性,一般需要推理、論證,而判斷一個命題是假命題,只需舉出一個反例即可.6、C【分析】根據(jù)概率公式計算即可得到結(jié)論.【詳解】解:A、∵α>90°,,故A正確;B、∵α+β+γ+θ=360°,α>β+γ+θ,,故B正確;C、∵α-β=γ-θ,

∴α+θ=β+γ,∵α+β+γ+θ=360°,

∴α+θ=β+γ=180°,∴指針落在紅色或紫色區(qū)域的概率和為0.5,故C錯誤;

D、∵γ+θ=180°,

∴α+β=180°,∴指針落在紅色或黃色區(qū)域的概率和為0.5,故D正確;

故選:C.【點睛】本題考查了概率公式,熟練掌握概率公式是解題的關鍵.7、C【分析】設y=0,得到一元二次方程,根據(jù)根的判別式判斷有幾個解就有與x軸有幾個交點.【詳解】解:∵拋物線y=x2+kx﹣1,∴當y=0時,則0=x2+kx﹣1,∴△=b2﹣4ac=k2+4>0,∴方程有2個不相等的實數(shù)根,∴拋物線y=x2+kx﹣與x軸交點的個數(shù)為2個,故選C.8、B【分析】首先證明,然后再根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半,即.【詳解】解:設則,在中,即解得為中點,故選B【點睛】本題主要考查了角平分線的性質(zhì)、直角三角形斜邊上的中線,含30度角的直角三角形.9、B【分析】矩形、菱形、正方形都是特殊的平行四邊形,因而平行四邊形的性質(zhì)就是四個圖形都具有的性質(zhì).【詳解】解:平行四邊形的對角線互相平分,而對角線相等、平分一組對角、互相垂直不一定成立.

故平行四邊形、矩形、菱形、正方形都具有的性質(zhì)是:對角線互相平分.

故選:B.【點睛】本題主要考查了正方形、矩形、菱形、平行四邊形的性質(zhì),理解四個圖形之間的關系是解題關鍵.10、D【分析】過點C作CD⊥AB,則在Rt△ACD中易得AD的長,再在直角△BCD中求出BD,相加可得AB的長.【詳解】過C作CD⊥AB于D點,∴∠ACD=30°,∠BCD=45°,AC=1.在Rt△ACD中,cos∠ACD=,∴CD=AC?cos∠ACD=1×.在Rt△DCB中,∵∠BCD=∠B=45°,∴CD=BD=30,∴AB=AD+BD=30+30.答:此時輪船所在的B處與燈塔P的距離是(30+30)nmile.故選D.【點睛】此題主要考查了解直角三角形的應用-方向角問題,求三角形的邊或高的問題一般可以轉(zhuǎn)化為解直角三角形的問題,解決的方法就是作高線.二、填空題(每小題3分,共24分)11、【分析】先根據(jù)正方形的性質(zhì)得到CD=1,∠CDA=90°,再利用旋轉(zhuǎn)的性質(zhì)得CF=,根據(jù)正方形的性質(zhì)得∠CFE=45°,則可判斷△DFH為等腰直角三角形,從而計算CF-CD即可.【詳解】∵四邊形ABCD為正方形,∴CD=1,∠CDA=90°,∵邊長為1的正方形ABCD繞點C按順時針方向旋轉(zhuǎn)到FECG的位置,使得點D落在對角線CF上,∴CF=,∠CFDE=45°,∴△DFH為等腰直角三角形,∴DH=DF=CF-CD=-1.故答案為-1.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了正方形的性質(zhì).12、2m【解析】試題分析:本題考查了一元二次方程的應用,這類題目體現(xiàn)了數(shù)形結(jié)合的思想,如圖,需利用平移把不規(guī)則的圖形變?yōu)橐?guī)則圖形,進而即可列出方程,求出答案.還要注意根據(jù)題意考慮根的合理性,從而確定根的取舍.本題可設道路寬為x米,利用平移把不規(guī)則的圖形變?yōu)橐?guī)則圖形,如此一來,所有草坪面積之和就變?yōu)榱耍?2-x)(20-x)米2,進而即可列出方程,求出答案.試題解析:解:設道路寬為x米(32-x)(20-x)=540解得:x1=2,x2=50(不合題意,舍去)∴x=2答:設道路寬為2米考點:1、一元二次方程的應用;2、數(shù)形結(jié)合的思想.13、【分析】連接DF,OD,根據(jù)圓周角定理得到∠CDF=90°,根據(jù)三角形的內(nèi)角和得到∠COD=120°,根據(jù)三角函數(shù)的定義得到CF==4,根據(jù)弧長公式即可得到結(jié)論.【詳解】解:如圖,連接DF,OD,∵CF是⊙O的直徑,∴∠CDF=90°,∵∠ADC=60°,∠A=90°,∴∠ACD=30°,∵CD平分∠ACB交AB于點D,∴∠DCF=30°,∵OC=OD,∴∠OCD=∠ODC=30°,∴∠COD=120°,在Rt△CAD中,CD=2AD=2,在Rt△FCD中,CF===4,∴⊙O的半徑=2,∴劣弧的長==π,故答案為π.【點睛】本題考查了圓周角定理,解直角三角形,弧長的計算,作出輔助線構(gòu)建直角三角形是本題的關鍵.14、,答案不唯一【解析】設反比例函數(shù)解析式為y=,根據(jù)題意得k<0,|k|<1,當k取?5時,反比例函數(shù)解析式為y=?.故答案為y=?.答案不唯一.15、3.2【分析】先利用勾股定理求出AC,設,依題意得,故,易證,得到,再在中利用勾股定理解出,又得,列出方程解方程得到x,即可得到AD【詳解】在中利用勾股定理求出,設,依題意得,故.由求出,再在中,利用勾股定理求出,然后由得,即,解得,從而.【點睛】本題考查勾股定理與相似三角形,解題關鍵在于靈活運用兩者進行線段替換16、1.【分析】設盒子內(nèi)白色乒乓球的個數(shù)為x,根據(jù)摸到白色乒乓球的概率為列出關于x的方程,解之可得.【詳解】解:設盒子內(nèi)白色乒乓球的個數(shù)為,根據(jù)題意,得:,解得:,經(jīng)檢驗:是原分式方程的解,∴盒子內(nèi)白色乒乓球的個數(shù)為1,故答案為1.【點睛】此題主要考查了概率公式,關鍵是掌握隨機事件A的概率事件A可能出現(xiàn)的結(jié)果數(shù):所有可能出現(xiàn)的結(jié)果數(shù).17、【分析】先由△BOC的面積得出①,再判斷出△BOC∽△ADC,得出②,聯(lián)立①②求出,即可得出結(jié)論.【詳解】設點A的坐標為,

∴,

∵直線過點A并且與兩坐標軸分別交于點B,C,

∴,∴,,

∵△BOC的面積是3,

∴,

∴,

∴①

∵AD⊥x軸,

∴OB∥AD,

∴△BOC∽△ADC,

∴,

∴,

∴②,

聯(lián)立①②解得,(舍)或,

∴.故答案為:.【點睛】本題是反比例函數(shù)與幾何的綜合題,主要考查了坐標軸上點的特點,反比例函數(shù)上點的特點,相似三角形的判定和性質(zhì),得出是解本題的關鍵.18、或【解析】將情況分為腰比底邊長和腰比底邊短兩種情況來討論,根據(jù)題意求出底邊的長進而求出余弦值即可.【詳解】當腰比底邊長長時,若等腰三角形的腰長為5,“邊長正度值”為3,那么底邊長為2,所以這個等邊三角形底角的余弦值為;當腰比底邊長短時,若等腰三角形的腰長為5,“邊長正度值”為3,那么底邊長為8,所以這個等邊三角形底角的余弦值為.【點睛】本題主要考查對新定義的理解能力、角的余弦的意義,熟練掌握角的余弦的意義是解答本題的關鍵.三、解答題(共66分)19、(1)2000;(2)①售價是75元,②售價為85元,利潤最大為3125元.【分析】(1)用每件利潤乘以50件即可;

(2)每件售價降價x元,則每件利潤為(100-60-x)元,銷售量為(50+5x)件,它們的乘積為利潤y,

①利用y=2625得到方程(100-60-x)(50+5x)=2625,然后解方程即可;

②由于y=(100-60-x)(50+5x),則可利用二次函數(shù)的性質(zhì)確定最大利潤值.【詳解】解:(1)解:(1)該網(wǎng)店銷售該商品原來一天可獲利潤為(100-60)×50=2000(元),

故答案為2000;(2)①解得或,又因盡量多增加銷售量,故.售價是元.答:每件商品的售價應降價25元;②,當時,售價為元,利潤最大為3125元.答:答:當該商品每件售價為85元時,該網(wǎng)店一天所獲利潤最大,最大利潤值為3125元.【點睛】本題考查了二次函數(shù)的應用:在商品經(jīng)營活動中,經(jīng)常會遇到求最大利潤,最大銷量等問題.解此類題的關鍵是通過題意,確定出二次函數(shù)的解析式,然后確定其最大值,實際問題中自變量x的取值要使實際問題有意義,因此在求二次函數(shù)的最值時,一定要注意自變量x的取值范圍.20、【分析】首先對所求的式子進行化簡,把所求的式子化成的形式,然后整體代入求解即可.【詳解】解;.,,∴原式.【點睛】本題考查了整式的化簡求值.正確理解完全平方公式的結(jié)構(gòu),對所求的式子進行化解變形是關鍵.21、(1)①見解析,②2;(2)見解析【分析】(1)①先根據(jù)圓周角定理得出,再得出,再根據(jù)角平分線的定義得出,最后根據(jù)三角形外角定理即可求證;②取中點,連接,可得是中位線,根據(jù)平行線的性質(zhì)得,然后根據(jù)等腰三角形的性質(zhì)得出,最后再根據(jù)中位線的性質(zhì)得出;(2)上截取,連接,由題意先得出,再得出,然后由旋轉(zhuǎn)性質(zhì)得、,再根據(jù)同角的補角相等得出,然后證的,最后得出即可證明.【詳解】解:(1)①證明:為的直徑,.,,..平分,.,,.;②解法一:如圖,取中點,連接,為的中點,,..,,..;解法二:如圖,作,垂足為,平分,,.......在中,.;解法三:如圖,作,垂足為,設平分,,.∴∴,即∴解得:∴(2)證明(法一):如圖,在上截取,連接.,....由旋轉(zhuǎn)性質(zhì)得,,.,..(沒寫不扣分)...為的切線.證法二:如圖,延長到,使.由旋轉(zhuǎn)性質(zhì)得,,..,..(沒寫不扣分),.,.......為的切線.證法三:作交延長線于點.(余下略)由旋轉(zhuǎn)性質(zhì)得,,∴,∴.∵∴∴、∴∴∴∴∵為的直徑,∴∴∴∴.∴為的切線.【點睛】本題主要考察圓周角定理、角平分線定義、中位線性質(zhì)、全等三角形的判定及性質(zhì)等,準確作出輔助線是關鍵.22、(1)直線的解析式為,k=1;(2)2.【解析】(1)根據(jù)平移的性質(zhì)即可求得直線的解析式,由直線和即可求得A的坐標,然后代入雙曲線求得k的值;(2)作軸于E,軸于F,聯(lián)立方程求得B點的坐標,然后根據(jù),求得即可.【詳解】解:(1)根據(jù)平移的性質(zhì),將直線向左平移一個單位后得到,∴直線的解析式為,∵直線與雙曲線相交于點A,∴A點的橫坐標和縱坐標相等,∵,∴,;(2)作軸于E,軸于F,解得或∴,∵,∴.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,解題的關鍵是熟練掌握待定系數(shù)法,學會構(gòu)建方程組確定交點坐標,屬于中考??碱}型.23、,原式=【分析】根據(jù)分式的運算進行化簡,再求出一元二次方程m2-m-2=0的解,并代入使分式有意義的值求解.【詳解】==,由m2-m-2=0解得,m1=2,m2=-1,因為m=-1分式無意義,所以m=2時,代入原式==.【點睛】此題主要考查分式的運算及一元二次方程的求解,解題的關鍵熟知分式額分母不為零.24、(1)詳見解析;(2)詳見解析;(3)DE=1.【分析】(1)根據(jù)垂徑定理可得AD=CD,得PD是AC的垂直平分線,可判斷出PA=PC;(2)由PC=PA得出∠PAC=∠PCA,再判斷出∠ACB=90°,得出∠CAB+∠CBA=90°,再判斷出∠PCA+∠CAB=90°,得出∠CAB+∠PAC=90°,即可得出結(jié)論;(2)根據(jù)AB和DF的比設AB=3a,DF=2a,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論