2023屆上海市楊浦區(qū)九級第一期期末一??荚嚁?shù)學(xué)九年級第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2023屆上海市楊浦區(qū)九級第一期期末一模考試數(shù)學(xué)九年級第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2023屆上海市楊浦區(qū)九級第一期期末一??荚嚁?shù)學(xué)九年級第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2023屆上海市楊浦區(qū)九級第一期期末一模考試數(shù)學(xué)九年級第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2023屆上海市楊浦區(qū)九級第一期期末一??荚嚁?shù)學(xué)九年級第一學(xué)期期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,△ABC中,∠C=90°,∠B=30°,AC=,D、E分別在邊AC、BC上,CD=1,DE∥AB,將△CDE繞點C旋轉(zhuǎn),旋轉(zhuǎn)后點D、E對應(yīng)的點分別為D′、E′,當(dāng)點E′落在線段AD′上時,連接BE′,此時BE′的長為()A.2 B.3 C.2 D.32.拋物線向左平移1個單位,再向下平移2個單位,所得到的拋物線是()A. B. C. D.3.下列方程中是一元二次方程的是()A.xy+2=1 B.C.x2=0 D.a(chǎn)x2+bx+c=04.拋物線y=x2﹣2x+3的頂點坐標(biāo)是()A.(1,3) B.(﹣1,3) C.(1,2) D.(﹣1,2)5.如圖,在平面直角坐標(biāo)系中,M、N、C三點的坐標(biāo)分別為(,1),(3,1),(3,0),點A為線段MN上的一個動點,連接AC,過點A作AB⊥AC交y軸于點B,當(dāng)點A從M運動到N時,點B隨之運動,設(shè)點B的坐標(biāo)為(0,b),則b的取值范圍是()A.≤b≤1 B.≤b≤1 C.≤b≤ D.≤b≤16.已知x2+y=3,當(dāng)1≤x≤2時,y的最小值是()A.-1 B.2 C.2.75 D.37.已知三角形兩邊的長分別是3和6,第三邊的長是方程x2﹣6x+8=0的根,則這個三角形的周長等于()A.13 B.11 C.11或1 D.12或18.為了解我縣目前九年級學(xué)生對中考體育的重視程度,從全縣5千多名九年級的學(xué)生中抽取200名學(xué)生作為樣本,對其進行中考體育項目的測試,200名學(xué)生的體育平均成績?yōu)?0分則我縣目前九年級學(xué)生中考體育水平大概在()A.40分 B.200分 C.5000 D.以上都有可能9.小明在太陽光下觀察矩形木板的影子,不可能是()A.平行四邊形 B.矩形 C.線段 D.梯形10.如圖,小李打網(wǎng)球時,球恰好打過網(wǎng),且落在離網(wǎng)4m的位置上,則球拍擊球的高度h為()A.1.6m B.1.5m C.2.4m D.1.2m二、填空題(每小題3分,共24分)11.已知圓錐的底面圓半徑是1,母線是3,則圓錐的側(cè)面積是______.12.已知二次函數(shù)y=-x2+2x+1,若y隨x增大而增大,則x的取值范圍是____.13.如圖,AB是⊙C的直徑,點C、D在⊙C上,若∠ACD=33°,則∠BOD=_____.14.已知二次函數(shù)y=-x2+2x+5,當(dāng)x________時,y隨x的增大而增大15.為解決群眾看病難的問題,一種藥品連續(xù)兩次降價,每盒價格由原來的60元降至48.6元.若平均每次降價的百分率是x,則關(guān)于x的方程是________

.16.如圖,一個半徑為,面積為的扇形紙片,若添加一個半徑為的圓形紙片,使得兩張紙片恰好能組合成一個圓錐體,則添加的圓形紙片的半徑為____.17.如圖,已知點A、B分別在反比例函數(shù)y=(x>0),y=﹣(x>0)的圖象上,且OA⊥OB,則的值為_____.18.小紅在地上畫了半徑為2m和3m的同心圓,如圖,然后在一定距離外向圈內(nèi)擲小石子,則擲中陰影部分的概率是_____.三、解答題(共66分)19.(10分)(1)計算:(2)已知,求的值20.(6分)如圖,在等腰直角三角形ABC中,D是AB的中點,E,F(xiàn)分別是AC,BC.上的點(點E不與端點A,C重合),且連接EF并取EF的中點O,連接DO并延長至點G,使,連接DE,DF,GE,GF(1)求證:四邊形EDFG是正方形;(2)直接寫出當(dāng)點E在什么位置時,四邊形EDFG的面積最小?最小值是多少?21.(6分)如圖1,將邊長為的正方形如圖放置在直角坐標(biāo)系中.(1)如圖2,若將正方形繞點順時針旋轉(zhuǎn)時,求點的坐標(biāo);(2)如圖3,若將正方形繞點順時針旋轉(zhuǎn)時,求點的坐標(biāo).22.(8分)“2019大洋灣鹽城馬拉松”的賽事共有三項:A,“全程馬拉松”、B,“半程馬拉松”、C.“迷你健身跑”,小明和小剛參與了該項賽事的志愿者服務(wù)工作,組委會隨機將志愿者分配到三個項目組.(1)小明被分配到“迷你健身跑”項目組的概率為;(2)求小明和小剛被分配到不同項目組的概率.23.(8分)小明按照列表、描點、連線的過程畫二次函數(shù)的圖象,下表與下圖是他所完成的部分表格與圖象,求該二次函數(shù)的解析式,并補全表格與圖象.24.(8分)如圖,在△ABC中,BC=12,tanA=,∠B=30°,求AC的長和△ABC的面積.25.(10分)如圖,在△ABC中,CD⊥AB,垂足為點D.若AB=12,CD=6,tanA=,求sinB+cosB的值.26.(10分)在如圖所示的方格紙中,每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點及點O都在格點上(每個小方格的頂點叫做格點).(1)以點O為位似中心,在網(wǎng)格區(qū)域內(nèi)畫出△A′B′C′,使△A′B′C′與△ABC位似(A′、B′、C′分別為A、B、C的對應(yīng)點),且位似比為2:1;(2)△A′B′C′的面積為個平方單位;(3)若網(wǎng)格中有一格點D′(異于點C′),且△A′B′D′的面積等于△A′B′C′的面積,請在圖中標(biāo)出所有符合條件的點D′.(如果這樣的點D′不止一個,請用D1′、D2′、…、Dn′標(biāo)出)

參考答案一、選擇題(每小題3分,共30分)1、B【分析】如圖,作CH⊥BE′于H,設(shè)AC交BE′于O.首先證明∠CE′B=∠D′=60°,解直角三角形求出HE′,BH即可解決問題.【詳解】解:如圖,作CH⊥BE′于H,設(shè)AC交BE′于O.∵∠ACB=90°,∠ABC=30°,∴∠CAB=60°,∵DE∥AB,∴=,∠CDE=∠CAB=∠D′=60°∴=,∵∠ACB=∠D′CE′,∴∠ACD′=∠BCE′,∴△ACD′∽△BCE′,∴∠D′=∠CE′B=∠CAB,在Rt△ACB中,∵∠ACB=90°,AC=,∠ABC=30°,∴AB=2AC=2,BC=AC=,∵DE∥AB,∴=,∴=,∴CE=,∵∠CHE′=90°,∠CE′H=∠CAB=60°,CE′=CE=∴E′H=CE′=,CH=HE′=,∴BH===∴BE′=HE′+BH=3,故選:B.【點睛】本題考查了相似三角形的綜合應(yīng)用題,涉及了旋轉(zhuǎn)的性質(zhì)、平行線分線段成比例、相似三角形的性質(zhì)與判定等知識點,解題的關(guān)鍵是靈活運用上述知識點進行推理求導(dǎo).2、B【分析】根據(jù)“左加右減、上加下減”的平移規(guī)律即可解答.【詳解】解:拋物線向左平移1個單位,再向下平移2個單位,所得到的拋物線是,故答案為:B.【點睛】本題考查了拋物線的平移,解題的關(guān)鍵是熟知“左加右減、上加下減”的平移規(guī)律.3、C【解析】分析:本題根據(jù)一元二次方程的定義解答.一元二次方程必須滿足四個條件:(1)未知數(shù)的最高次數(shù)是1;(1)二次項系數(shù)不為0;(3)是整式方程;(4)含有一個未知數(shù).由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.詳解:A.是二元二次方程,故本選項錯誤;B.是分式方程,不是整式方程,故本選項錯誤;C.是一元二次方程,故本選項正確;D.當(dāng)a、b、c是常數(shù),a≠0時,方程才是一元二次方程,故本選項錯誤.故選C.點睛:本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數(shù)且未知數(shù)的最高次數(shù)是1.4、C【分析】把拋物線解析式化為頂點式可求得答案.【詳解】解:∵y=x2﹣2x+3=(x﹣1)2+2,∴頂點坐標(biāo)為(1,2),故選:C.【點睛】本題考查了拋物線的頂點坐標(biāo)的求解,解題的關(guān)鍵是熟悉配方法.5、B【分析】延長NM交y軸于P點,則MN⊥y軸.連接CN.證明△PAB∽△NCA,得出,設(shè)PA=x,則NA=PN﹣PA=3﹣x,設(shè)PB=y(tǒng),代入整理得到y(tǒng)=3x﹣x2=﹣(x﹣)2+,根據(jù)二次函數(shù)的性質(zhì)以及≤x≤3,求出y的最大與最小值,進而求出b的取值范圍.【詳解】解:如圖,延長NM交y軸于P點,則MN⊥y軸.連接CN.在△PAB與△NCA中,,∴△PAB∽△NCA,∴,設(shè)PA=x,則NA=PN﹣PA=3﹣x,設(shè)PB=y(tǒng),∴,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=時,y有最大值,此時b=1﹣=﹣,x=3時,y有最小值0,此時b=1,∴b的取值范圍是﹣≤b≤1.故選:B.【點睛】本題考查了相似三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),得出y與x之間的函數(shù)解析式是解題的關(guān)鍵.6、A【分析】移項后變成求二次函數(shù)y=-x2+2的最小值,再根據(jù)二次函數(shù)的圖像性質(zhì)進行答題.【詳解】解:∵x2+y=2,∴y=-x2+2.∴該拋物線的開口方向向下,且其頂點坐標(biāo)是(0,2).∵2≤x≤2,∴離對稱軸越遠的點所對應(yīng)的函數(shù)值越小,∴當(dāng)x=2時,y有最小值為-4+2=-2.故選:A.【點睛】本題考查了二次函數(shù)的最值.求二次函數(shù)的最值有常見的兩種方法,第一種是配方法,第二種是直接套用頂點的縱坐標(biāo)求,熟練掌握二次函數(shù)的圖像及性質(zhì)是解決本題的關(guān)鍵.7、A【分析】首先從方程x2﹣6x+8=0中,確定第三邊的邊長為2或4;其次考查2,3,6或4,3,6能否構(gòu)成三角形,從而求出三角形的周長.【詳解】解:由方程x2-6x+8=0,解得:x1=2或x2=4,當(dāng)?shù)谌吺?時,2+3<6,不能構(gòu)成三角形,應(yīng)舍去;當(dāng)?shù)谌吺?時,三角形的周長為:4+3+6=1.故選:A.【點睛】考查了三角形三邊關(guān)系,求三角形的周長,不能盲目地將三邊長相加起來,而應(yīng)養(yǎng)成檢驗三邊長能否成三角形的好習(xí)慣,不符合題意的應(yīng)棄之.8、A【分析】平均數(shù)可以反映一組數(shù)據(jù)的一般情況、和平均水平,樣本的平均數(shù)即可估算出總體的平均水平.【詳解】∵200名學(xué)生的體育平均成績?yōu)?0分,∴我縣目前九年級學(xué)生中考體育水平大概在40分,故選:A.【點睛】本題考查用樣本平均數(shù)估計總體的平均數(shù),平均數(shù)是描述數(shù)據(jù)集中位置的一個統(tǒng)計量,既可以用它來反映一組數(shù)據(jù)的一般情況、和平均水平,也可以用它進行不同組數(shù)據(jù)的比較,以看出組與組之間的差別.9、D【分析】根據(jù)平行投影的特點可確定矩形木板與地面平行且與光線垂直時所成的投影為矩形;當(dāng)矩形木板與光線方向平行且與地面垂直時所成的投影為一條線段;除以上兩種情況矩形在地面上所形成的投影均為平行四邊形,據(jù)此逐一判斷即可得答案.【詳解】A.將木框傾斜放置形成的影子為平行四邊形,故該選項不符合題意,B.將矩形木框與地面平行放置時,形成的影子為矩形,故該選項不符合題意,C.將矩形木框立起與地面垂直放置時,形成的影子為線段,D.∵由物體同一時刻物高與影長成比例,且矩形對邊相等,梯形兩底不相等,∴得到投影不可能是梯形,故該選項符合題意,故選:D.【點睛】本題考查了平行投影特點:在同一時刻,不同物體的物高和影長成比例,平行物體的影子仍舊平行或重合.靈活運用平行投影的性質(zhì)是解題的關(guān)鍵.10、B【解析】分析:本題是利用三角形相似的判定和性質(zhì)來求數(shù)據(jù).解析:根據(jù)題意三角形相似,∴故選B.二、填空題(每小題3分,共24分)11、3π.【解析】∵圓錐的底面圓半徑是1,∴圓錐的底面圓的周長=2π,則圓錐的側(cè)面積=×2π×3=3π,故答案為3π.12、x≤1【解析】試題解析:二次函數(shù)的對稱軸為:隨增大而增大時,的取值范圍是故答案為13、114°.【分析】利用圓周角定理求出∠AOD即可解決問題.【詳解】∵∠AOD=2∠ACD,∠ACD=33°,∴∠AOD=66°,∴∠BOD=180°﹣66°=114°,故答案為114°.【點睛】本題考查圓周角定理,解題的關(guān)鍵是掌握圓周角定理.14、x<1【分析】把二次函數(shù)解析式化為頂點式,可求得其開口方向及對稱軸,利用二次函數(shù)的增減性可求得答案.【詳解】解:∵y=-x2+2x+5=-(x-1)2+6,

∴拋物線開口向下,對稱軸為x=1,

∴當(dāng)x<1時,y隨x的增大而增大,

故答案為:<1.【點睛】此題考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關(guān)鍵,即在y=a(x-h)2+k中,對稱軸為x=h,頂點坐標(biāo)為(h,k).15、10(1﹣x)2=48.1.【解析】試題分析:本題可先列出第一次降價后藥品每盒價格的代數(shù)式,再根據(jù)第一次的價格列出第二次降價的售價的代數(shù)式,然后令它等于48.1即可列出方程.解:第一次降價后每盒價格為10(1﹣x),則第二次降價后每盒價格為10(1﹣x)(1﹣x)=10(1﹣x)2=48.1,即10(1﹣x)2=48.1.故答案為10(1﹣x)2=48.1.考點:由實際問題抽象出一元二次方程.16、1【分析】能組合成圓錐體,那么扇形的弧長等于圓形紙片的周長.應(yīng)先利用扇形的面積=圓錐的弧長×母線長÷1,得到圓錐的弧長=1扇形的面積÷母線長,進而根據(jù)圓錐的底面半徑=圓錐的弧長÷1π求解.【詳解】解:∵圓錐的弧長=1×11π÷6=4π,

∴圓錐的底面半徑=4π÷1π=1cm,

故答案為1.【點睛】解決本題的難點是得到圓錐的弧長與扇形面積之間的關(guān)系,注意利用圓錐的弧長等于底面周長這個知識點.17、.【分析】作AC⊥y軸于C,BD⊥y軸于D,如圖,利用反比例函數(shù)圖象上點的坐標(biāo)特征和三角形面積公式得到S△OAC=,S△OBD=,再證明Rt△AOC∽Rt△OBD,然后利用相似三角形的性質(zhì)得到的值.【詳解】解:作AC⊥y軸于C,BD⊥y軸于D,如圖,∵點A、B分別在反比例函數(shù)y=(x>0),y=﹣(x>0)的圖象上,∴S△OAC=×1=,S△OBD=×|﹣5|=,∵OA⊥OB,∴∠AOB=90°∴∠AOC+∠BOD=90°,∴∠AOC=∠DBO,∴Rt△AOC∽Rt△OBD,∴=()2==,∴=.∴=.故答案為:.【點睛】本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征:反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.18、.【分析】分別計算出陰影部分面積和非陰影面積,即可求出擲中陰影部分的概率.【詳解】∵大圓半徑為3,小圓半徑為2,∴S大圓(m2),S小圓(m2),S圓環(huán)=9π﹣4π=5π(m2),∴擲中陰影部分的概率是.故答案為:.【點睛】本題考查了幾何概率的求法,用到的知識點為:概率=相應(yīng)的面積與總面積之比.三、解答題(共66分)19、(1)1;(2).【分析】(1)先計算乘方并對平方根化簡,最后進行加減運算即可;(2)用含b的代數(shù)式表示a,代入式子即可求值.【詳解】解:(1)==1(2)已知,可得,代入=.【點睛】本題考查實數(shù)的運算以及代入求值,熟練掌握相關(guān)計算法則是解題關(guān)鍵.20、(1)詳見解析;(2)當(dāng)點E為線段AC的中點時,四邊形EDFG的面積最小,該最小值為4【解析】(1)連接CD,根據(jù)等腰直角三角形的性質(zhì)可得出∠A=∠DCF=45°、AD=CD,結(jié)合AE=CF可證出△ADE≌△CDF(SAS),根據(jù)全等三角形的性質(zhì)可得出DE=DF、ADE=∠CDF,通過角的計算可得出∠EDF=90°,再根據(jù)O為EF的中點、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可證出四邊形EDFG是正方形;(2)過點D作DE′⊥AC于E′,根據(jù)等腰直角三角形的性質(zhì)可得出DE′的長度,從而得出2≤DE<2,再根據(jù)正方形的面積公式即可得出四邊形EDFG的面積的最小值.【詳解】(1)證明:連接CD,如圖1所示.∵為等腰直角三角形,,D是AB的中點,∴在和中,∴,∴,∵,∴,∴為等腰直角三角形.∵O為EF的中點,,∴,且,∴四邊形EDFG是正方形;(2)解:過點D作于E′,如圖2所示.∵為等腰直角三角形,,∴,點E′為AC的中點,∴(點E與點E′重合時取等號).∴∴當(dāng)點E為線段AC的中點時,四邊形EDFG的面積最小,該最小值為4【點睛】本題考查了正方形的判定與性質(zhì)、等腰直角三角形以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是:(1)找出GD⊥EF且GD=EF;(2)根據(jù)正方形的面積公式找出4≤S四邊形EDFG<1.21、(1)A;(2)B【分析】(1)作軸于點,則,,求得AD=1,根據(jù)勾股定理求得OD=,即可得出點A的坐標(biāo);(2)連接BO,過點作軸于點,根據(jù)旋轉(zhuǎn)角為75°,可得∠BOE=30°,根據(jù)勾股定理可得,再根據(jù)Rt△BOD中,,,可得點B的坐標(biāo).【詳解】解:(1)如圖1,作軸于點,則,,點的坐標(biāo)為.圖1(2)如圖2,連接,過點作軸于點,則,在中,在中,,點的坐標(biāo)為.圖2【點睛】本題主要考查了旋轉(zhuǎn)變換以及正方形的性質(zhì),解決問題的關(guān)鍵是作輔助線構(gòu)造直角三角形,解題時注意:正方形的四條邊都相等,四個角都是直角.22、(1);(2)【解析】(1)利用概率公式直接計算即可;(2)先畫樹狀圖展示所有9種等可能的結(jié)果數(shù),再找出其中小明和小剛被分配到不同項目組的結(jié)果數(shù),然后根據(jù)概率公式計算.【詳解】解:(1)∵共有A,B,C三項賽事,∴小明被分配到“迷你健身跑”項目組的概率是,故答案為:;(2)畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中小明和小剛被分配到不同項目組的結(jié)果數(shù)為6,所以小明和小剛被分配到不同項目組的概率.【點睛】本題考查了列表法與樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結(jié)果求出n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.23、,(4,1),(1,0)【詳解】分析:利用待定系數(shù)法、描點法即可解決問題;本題解析:設(shè)二次函數(shù)的解析式y(tǒng)=ax2+bx+c.把(-1,0)(0,1),(2,9)代得到解得,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論