版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.將一元二次方程化成一般式后,二次項(xiàng)系數(shù)和一次項(xiàng)系數(shù)分別為()A.4,3 B.4,7 C.4,-3 D.2.下列事件中,是必然事件的是()A.從裝有10個黑球的不透明袋子中摸出一個球,恰好是紅球B.拋擲一枚普通正方體骰子,所得點(diǎn)數(shù)小于7C.拋擲一枚一元硬幣,正面朝上D.從一副沒有大小王的撲克牌中抽出一張,恰好是方塊3.如圖,在4×4的網(wǎng)格中,點(diǎn)A,B,C,D,H均在網(wǎng)格的格點(diǎn)上,下面結(jié)論:①點(diǎn)H是△ABD的內(nèi)心②點(diǎn)H是△ABD的外心③點(diǎn)H是△BCD的外心④點(diǎn)H是△ADC的外心其中正確的有()A.1個 B.2個 C.3個 D.4個4.如圖,在△ABC中,點(diǎn)D,E,F(xiàn)分別是邊AB,AC,BC上的點(diǎn),DE∥BC,EF∥AB,且AD∶DB=3∶5,那么CF∶CB等于()A.5∶8 B.3∶8 C.3∶5 D.2∶55.為增加綠化面積,某小區(qū)將原來正方形地磚更換為如圖所示的正八邊形植草磚,更換后,圖中陰影部分為植草區(qū)域,設(shè)正八邊形與其內(nèi)部小正方形的邊長都為a,則陰影部分的面積為()A.2a2 B.3a2 C.4a2 D.5a26.如圖,中,,,,則的長為()A. B. C.5 D.7.如圖,一斜坡AB的長為m,坡度為1:1.5,則該斜坡的鉛直高度BC的高為()A.3m B.4m C.6m D.16m8.不透明袋子中有個紅球和個藍(lán)球,這些球除顏色外無其他差別,從袋子中隨機(jī)取出個球是紅球的概率是()A. B. C. D.9.如圖,在Rt△ACB中,∠ACB=90°,∠A=35°,將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)α角到△A1B1C的位置,A1B1恰好經(jīng)過點(diǎn)B,則旋轉(zhuǎn)角α的度數(shù)等()A.70° B.65° C.55° D.35°10.將拋物線向左平移3個單位長度,再向上平移5個單位長度,得到的拋物線的表達(dá)式為()A. B.C. D.二、填空題(每小題3分,共24分)11.如圖,由邊長為1的小正方形組成的網(wǎng)格中,點(diǎn)為格點(diǎn)(即小正方形的頂點(diǎn)),與相交于點(diǎn),則的長為_________.12.如圖,在矩形ABCD中,AB=2,BC=4,點(diǎn)E、F分別在BC、CD上,若AE=,∠EAF=45°,則AF的長為_____.13.如圖,是的直徑,點(diǎn)在上,且,垂足為,,,則__________.14.已知拋物線y=2x2﹣5x+3與y軸的交點(diǎn)坐標(biāo)是_____.15.如圖,已知矩形ABCD的頂點(diǎn)A、D分別落在x軸、y軸,OD=2OA=6,AD:AB=3:1.則點(diǎn)B的坐標(biāo)是_____.16.如圖,已知兩個反比例函數(shù)和在第一象限內(nèi)的圖象,設(shè)點(diǎn)在上,軸于點(diǎn)交于點(diǎn)軸于點(diǎn)交于點(diǎn),則四邊形的面積為_______________________.17.如圖,AC是⊙O的直徑,B,D是⊙O上的點(diǎn),若⊙O的半徑為3,∠ADB=30°,則的長為____.18.雙十一期間,榮昌重百推出有獎銷售促銷活動,消費(fèi)達(dá)到800元以上得一次抽獎機(jī)會,李老師消費(fèi)1000元后來到抽獎臺,臺上放著一個不透明抽獎箱,里面放有規(guī)格完全相同的四個小球,球上分別標(biāo)有1,2,3,4四個數(shù)字,主持人讓李老師連續(xù)不放回抽兩次,每次抽取一個小球,如果兩個球上的數(shù)字均為奇數(shù)則可中獎,則李老師中獎的概率是__________.三、解答題(共66分)19.(10分)如圖,在等邊△ABC中,把△ABC沿直線MN翻折,點(diǎn)A落在線段BC上的D點(diǎn)位置(D不與B、C重合),設(shè)∠AMN=α.(1)用含α的代數(shù)式表示∠MDB和∠NDC,并確定的α取值范圍;(2)若α=45°,求BD:DC的值;(3)求證:AM?CN=AN?BD.20.(6分)問題提出:如圖所示,有三根針和套在一根針上的若干金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.a(chǎn).每次只能移動1個金屬片;b.較大的金屬片不能放在較小的金屬片上面.把個金屬片從1號針移到3號針,最少移動多少次?問題探究:為了探究規(guī)律,我們采用一般問題特殊化的方法,先從簡單的情形入手,再逐次遞進(jìn),最后得出一般性結(jié)論.探究一:當(dāng)時,只需把金屬片從1號針移到3號針,用符號表示,共移動了1次.探究二:當(dāng)時,為了避免將較大的金屬片放在較小的金屬片上面,我們利用2號針作為“中間針”,移動的順序是:a.把第1個金屬片從1號針移到2號針;b.把第2個金屬片從1號針移到3號針;c.把第1個金屬片從2號針移到3號針.用符號表示為:,,.共移動了3次.探究三:當(dāng)時,把上面兩個金屬片作為一個整體,則歸結(jié)為的情形,移動的順序是:a.把上面兩個金屬片從1號針移到2號針;b.把第3個金屬片從1號針移到3號針;c.把上面兩個金屬片從2號針移到3號針.其中(1)和(3)都需要借助中間針,用符號表示為:,,,,,,.共移動了7次.(1)探究四:請仿照前面步驟進(jìn)行解答:當(dāng)時,把上面3個金屬片作為一個整體,移動的順序是:___________________________________________________.(2)探究五:根據(jù)上面的規(guī)律你可以發(fā)現(xiàn)當(dāng)時,需要移動________次.(3)探究六:把個金屬片從1號針移到3號針,最少移動________次.(4)探究七:如果我們把個金屬片從1號針移到3號針,最少移動的次數(shù)記為,當(dāng)時如果我們把個金屬片從1號針移到3號針,最少移動的次數(shù)記為,那么與的關(guān)系是__________.21.(6分)如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D為邊CB上的一個動點(diǎn)(點(diǎn)D不與點(diǎn)B重合),過D作DO⊥AB,垂足為O,點(diǎn)B′在邊AB上,且與點(diǎn)B關(guān)于直線DO對稱,連接DB′,AD.(1)求證:△DOB∽△ACB;(2)若AD平分∠CAB,求線段BD的長;(3)當(dāng)△AB′D為等腰三角形時,求線段BD的長.22.(8分)已知為直角三角形,∠ACB=90°,AC=BC,點(diǎn)A、C在x軸上,點(diǎn)B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的拋物線過點(diǎn)B、D.(1)求點(diǎn)A的坐標(biāo)(用m表示);(2)求拋物線的解析式;(3)設(shè)點(diǎn)Q為拋物線上點(diǎn)P至點(diǎn)B之間的一動點(diǎn),連結(jié)PQ并延長交BC于點(diǎn)E,連結(jié)BQ并延長交AC于點(diǎn)F,試證明:FC(AC+EC)為定值.23.(8分)如圖,射線表示一艘輪船的航行路線,從到的走向?yàn)槟掀珫|30°,在的南偏東60°方向上有一點(diǎn),處到處的距離為200海里.(1)求點(diǎn)到航線的距離.(2)在航線上有一點(diǎn).且,若輪船沿的速度為50海里/時,求輪船從處到處所用時間為多少小時.(參考數(shù)據(jù):)24.(8分)甲、乙兩名隊(duì)員參加射擊訓(xùn)練,成績分別被制成下列兩個統(tǒng)計(jì)圖:根據(jù)以上信息,整理分析數(shù)據(jù)如下:平均成績/環(huán)中位數(shù)/環(huán)眾數(shù)/環(huán)方差甲乙(1)寫出表格中的值:(2)分別運(yùn)用表中的四個統(tǒng)計(jì)量,簡要分析這兩名隊(duì)員的射擊訓(xùn)練成績.若選派其中一名參賽,你認(rèn)為應(yīng)選哪名隊(duì)員?25.(10分)在推進(jìn)城鄉(xiāng)生活垃圾分類的行動中,某校數(shù)學(xué)興趣小組為了了解居民掌握垃圾分類知識的情況,對兩小區(qū)各600名居民進(jìn)行測試,從中各隨機(jī)抽取50名居民成績進(jìn)行整理得到部分信息:(信息一)小區(qū)50名居民成績的頻數(shù)直方圖如圖(每一組含前一個邊界值,不含后一個邊界值);(信息二)上圖中,從左往右第四組成績?nèi)缦拢?5777779797980808182828383848484(信息三)兩小區(qū)各50名居民成績的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(80分及以上為優(yōu)秀)、方差等數(shù)據(jù)如下(部分空缺):小區(qū)平均數(shù)中位數(shù)眾數(shù)優(yōu)秀率方差75.1___________7940%27775.1777645%211根據(jù)以上信息,回答下列問題:(1)求小區(qū)50名居民成績的中位數(shù);(2)請估計(jì)小區(qū)600名居民成績能超過平均數(shù)的人數(shù);(3)請盡量從多個角度,選擇合適的統(tǒng)計(jì)量分析兩小區(qū)參加測試的居民掌握垃圾分類知識的情況.26.(10分)在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)A(-3,0),與y軸交于點(diǎn)B(0,4),在第一象限內(nèi)有一點(diǎn)P(m,n),且滿足4m+3n=12.(1)求二次函數(shù)解析式.(2)若以點(diǎn)P為圓心的圓與直線AB、x軸相切,求點(diǎn)P的坐標(biāo).(3)若點(diǎn)A關(guān)于y軸的對稱點(diǎn)為點(diǎn)A′,點(diǎn)C在對稱軸上,且2∠CBA+∠PA′O=90?.求點(diǎn)C的坐標(biāo).
參考答案一、選擇題(每小題3分,共30分)1、C【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數(shù)且a≠0)特別要注意a≠0的條件.這是在做題過程中容易忽視的知識點(diǎn).在一般形式中ax2叫二次項(xiàng),bx叫一次項(xiàng),c是常數(shù)項(xiàng).其中a,b,c分別叫二次項(xiàng)系數(shù),一次項(xiàng)系數(shù),常數(shù)項(xiàng).【詳解】解:化成一元二次方程一般形式是4x2-1x+7=0,則它的二次項(xiàng)系數(shù)是4,一次項(xiàng)系數(shù)是-1.
故選:C.【點(diǎn)睛】本題主要考查了一元二次方程的一般形式,關(guān)鍵把握要確定一次項(xiàng)系數(shù),首先要把方程化成一般形式.2、B【解析】根據(jù)事件發(fā)生的可能性大小即可判斷.【詳解】A.從裝有10個黑球的不透明袋子中摸出一個球,恰好是紅球的概率為0,故錯誤;B.拋擲一枚普通正方體骰子,所得點(diǎn)數(shù)小于7的概率為1,故為必然事件,正確;C.拋擲一枚一元硬幣,正面朝上的概率為50%,為隨機(jī)事件,故錯誤;D.從一副沒有大小王的撲克牌中抽出一張,恰好是方塊,為隨機(jī)事件,故錯誤;故選B.【點(diǎn)睛】此題主要考查事件發(fā)生的可能性,解題的關(guān)鍵是熟知概率的定義.3、C【分析】先利用勾股定理計(jì)算出AB=BC=,AD=,CD=,AC=,再利用勾股定理的逆定理可得到∠ABC=∠ADC=90°,則CB⊥AB,CD⊥AD,根據(jù)角平分線定理的逆定理可判斷點(diǎn)C不在∠BAD的角平分線上,則根據(jù)三角形內(nèi)心的定義可對①進(jìn)行判斷;由于HA=HB=HC=HD=,則根據(jù)三角形外心的定義可對②③④進(jìn)行判斷.【詳解】解:∵AB=BC=,AD=,CD=,AC=,∴AB2+BC2=AC2,CD2+AD2=AC2,∴△ABC和△ADC都為直角三角形,∠ABC=∠ADC=90°,∵CB⊥AB,CD⊥AD,而CB≠CD,∴點(diǎn)C不在∠BAD的角平分線上,∴點(diǎn)H不是△ABD的內(nèi)心,所以①錯誤;∵HA=HB=HC=HD=,∴點(diǎn)H是△ABD的外心,點(diǎn)H是△BCD的外心,點(diǎn)H是△ADC的外心,所以②③④正確.故選:C.【點(diǎn)睛】本題考查了三角形的內(nèi)心:三角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點(diǎn)的連線平分這個內(nèi)角.也考查了三角形的外心和勾股定理.4、A【解析】∵DE∥BC,EF∥AB,∴,,∴,∴,∴,即.故選A.點(diǎn)睛:若,則,.5、A【分析】正多邊形和圓,等腰直角三角形的性質(zhì),正方形的性質(zhì).圖案中間的陰影部分是正方形,面積是,由于原來地磚更換成正八邊形,四周一個陰影部分是對角線為的正方形的一半,它的面積用對角線積的一半【詳解】解:.故選A.6、C【解析】過C作CD⊥AB于D,根據(jù)含30度角的直角三角形求出CD,解直角三角形求出AD,在△BDC中解直角三角形求出BD,相加即可求出答案.【詳解】過C作CD⊥AB于D,則∠ADC=∠BDC=90,∵∠A=30,AC=,∴CD=AC=,由勾股定理得:AD=CD=3,∵tanB==,∴BD=2,∴AB=2+3=5,故選C.【點(diǎn)睛】本題考查解直角三角形.7、B【分析】首先根據(jù)題意作出圖形,然后根據(jù)坡度=1:1.5,可得到BC和AC之間的倍數(shù)關(guān)系式,設(shè)BC=x,則AC=1.5x,再由勾股定理求得AB=,從而求得BC的值.【詳解】解:∵斜坡AB的坡度i=BC:AC=1:1.5,AB=,
∴設(shè)BC=x,則AC=1.5x,∴由勾股定理得AB=,又∵AB=,∴=,解得:x=4,∴BC=4m.故選:B.【點(diǎn)睛】本題考查坡度坡角的知識,屬于基礎(chǔ)題,對坡度的理解及勾股定理的運(yùn)用是解題關(guān)鍵.8、A【解析】根據(jù)紅球的個數(shù)以及球的總個數(shù),直接利用概率公式求解即可.【詳解】因?yàn)楣灿袀€球,紅球有個,所以,取出紅球的概率為,故選A.【點(diǎn)睛】本題考查了簡單的概率計(jì)算,正確把握概率的計(jì)算公式是解題的關(guān)鍵.9、A【解析】根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】解:∵在Rt△ACB中,∠ACB=90°,∠A=35°,∴∠ABC=55°,∵將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)α角到△A′B′C的位置,∴∠B′=∠ABC=55°,∠B′CA′=∠ACB=90°,CB=CB′,∴∠CBB′=∠B′=55°,∴∠α=70°,故選:A.【點(diǎn)睛】本題考查旋轉(zhuǎn)的性質(zhì)以及等腰三角形的性質(zhì).注意掌握旋轉(zhuǎn)前后圖形的對應(yīng)關(guān)系是解此題的關(guān)鍵.10、A【分析】易得新拋物線的頂點(diǎn),根據(jù)頂點(diǎn)式及平移前后二次項(xiàng)的系數(shù)不變可得新拋物線的解析式.【詳解】原拋物線的頂點(diǎn)為(0,0),向左平移3個單位,再向上平移1個單位,那么新拋物線的頂點(diǎn)為(?3,1);可設(shè)新拋物線的解析式為y=?4(x?h)2+k,代入得:y=?4(x+3)2+1.故選:A.【點(diǎn)睛】本題主要考查的是函數(shù)圖象的平移,根據(jù)平移規(guī)律“左加右減,上加下減”利用頂點(diǎn)的變化確定圖形的變化是解題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】如圖所示,由網(wǎng)格的特點(diǎn)易得△CEF≌△DBF,從而可得BF的長,易證△BOF∽△AOD,從而可得AO與AB的關(guān)系,然后根據(jù)勾股定理可求出AB的長,進(jìn)而可得答案.【詳解】解:如圖所示,∵∠CEB=∠DBF=90°,∠CFE=∠DFB,CE=DB=1,∴△CEF≌△DBF,∴BF=EF=BE=,∵BF∥AD,∴△BOF∽△AOD,∴,∴,∵,∴.故答案為:【點(diǎn)睛】本題以網(wǎng)格為載體,考查了全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)以及勾股定理等知識,屬于??碱}型,熟練掌握上述基本知識是解答的關(guān)鍵.12、【解析】分析:取AB的中點(diǎn)M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,則NF=x,再利用矩形的性質(zhì)和已知條件證明△AME∽△FNA,利用相似三角形的性質(zhì):對應(yīng)邊的比值相等可求出x的值,在直角三角形ADF中利用勾股定理即可求出AF的長.詳解:取AB的中點(diǎn)M,連接ME,在AD上截取ND=DF,設(shè)DF=DN=x,∵四邊形ABCD是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴NF=x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AE=,AB=2,∴BE=1,∴ME=,∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴,∴,解得:x=∴AF=故答案為.點(diǎn)睛:本題考查了矩形的性質(zhì)、相似三角形的判斷和性質(zhì)以及勾股定理的運(yùn)用,正確添加輔助線構(gòu)造相似三角形是解題的關(guān)鍵,13、2【分析】先連接OC,在Rt△ODC中,根據(jù)勾股定理得出OC的長,即可求得答案.【詳解】連接OC,如圖,
∵CD=4,OD=3,,
在Rt△ODC中,
∴,∵,∴.故答案為:.【點(diǎn)睛】此題考查了圓的認(rèn)識,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.14、(0,3)【分析】要求拋物線與y軸的交點(diǎn),即令x=0,解方程即可.【詳解】解:令x=0,則y=3,即拋物線y=2x2-5x+3與y軸的交點(diǎn)坐標(biāo)是(0,3).故答案為(0,3).【點(diǎn)睛】本題考查了拋物線與y軸的交點(diǎn).求二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與y軸的交點(diǎn)坐標(biāo),令x=0,即可求得交點(diǎn)縱坐標(biāo).15、(5,1)【分析】過B作BE⊥x軸于E,根據(jù)矩形的性質(zhì)得到∠DAB=90°,根據(jù)余角的性質(zhì)得到∠ADO=∠BAE,根據(jù)相似三角形的性質(zhì)得到AE=OD=2,DE=OA=1,于是得到結(jié)論.【詳解】解:過B作BE⊥x軸于E,∵四邊形ABCD是矩形,∴∠ADC=90°,∴∠ADO+∠OAD=∠OAD+∠BAE=90°,∴∠ADO=∠BAE,∴△OAD∽△EBA,∴OD:AE=OA:BE=AD:AB∵OD=2OA=6,∴OA=3∵AD:AB=3:1,∴AE=OD=2,BE=OA=1,∴OE=3+2=5,∴B(5,1)故答案為:(5,1)【點(diǎn)睛】本題考查了矩形的性質(zhì),相似三角形的判定和性質(zhì),坐標(biāo)與圖形性質(zhì),正確的作出輔助線并證明△OAD∽△EBA是解題的關(guān)鍵.16、【分析】根據(jù)反比函數(shù)比例系數(shù)k的幾何意義得到S△AOC=S△BOD=,S矩形PCOD=3,然后利用矩形面積分別減去兩個三角形的面積即可得到四邊形PAOB的面積.【詳解】解:∵PC⊥x軸,PD⊥y軸,∴S△AOC=S△BOD=×=,S矩形PCOD=3,∴四邊形PAOB的面積=3--=1故答案為:1.【點(diǎn)睛】本題考查了反比函數(shù)比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點(diǎn),過這一個點(diǎn)向x軸和y軸分別作垂線,與坐標(biāo)軸圍成的矩形的面積是定值|k|.17、2π.【分析】根據(jù)圓周角定理求出∠AOB,得到∠BOC的度數(shù),根據(jù)弧長公式計(jì)算即可.【詳解】解:由圓周角定理得,∠AOB=2∠ADB=60°,∴∠BOC=180°﹣60°=120°,∴的長=,故答案為:2π.【點(diǎn)睛】本題考查的是圓周角定理、弧長的計(jì)算,掌握圓周角定理、弧長公式是解題的關(guān)鍵.18、【分析】畫樹狀圖展示所有12種等可能的結(jié)果數(shù),找出兩個球上的數(shù)字均為奇數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中兩個球上的數(shù)字均為奇數(shù)的結(jié)果數(shù)為2,所以李老師中獎的概率=.故答案為:.【點(diǎn)睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.三、解答題(共66分)19、(1)∠MDB==2α﹣60°,∠NDC=180°﹣2α,(30°<α<90°);(2)+1;(3)見解析【分析】(1)利用翻折不變性,三角形內(nèi)角和定理求解即可解決問題.(2)設(shè)BM=x.解直角三角形用x表示BD,CD即可解決問題.(3)證明△BDM∽△CND,推出=,推出DM?CN=DN?BD可得結(jié)論.【詳解】(1)由翻折的性質(zhì)可知∠AMN=∠DMN=α,∵∠AMB=∠B+∠MDB,∠B=60°,∴∠MDB=2α﹣60°,∠NDC=180°﹣∠MDB﹣∠MDN=180°﹣(2α﹣60°)﹣60°=180°﹣2α,(30°<α<90°)(2)設(shè)BM=x.∵α=45°,∴∠AMD=90°,∴∠BMD=90°,∵∠B=60°,∴∠BDM=30°,∴BD=2x,DN=BD?cos30°=x,∴MA=MD=x,∴BC=AB=x+x,∴CD=BC﹣BD=x﹣x,∴BD:CD=2x:(x﹣x)=+1.(3)∵∠BDN=∠BDM+∠MDN=∠C+∠DNC,∠MDN=∠A=∠C=60°,∴∠BDM=∠DNC,∵∠B=∠C,∴△BDM∽△CND,∴=,∴DM?CN=DN?BD,∵DM=AM,ND=AN,∴AM?CN=AN?BD.【點(diǎn)睛】本題考查了翻折變換、解直角三角形以及相似三角形的判定與性質(zhì),熟練掌握折疊的性質(zhì)是解題的關(guān)鍵.20、(1)當(dāng)時,移動順序?yàn)椋海?,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2),(3),(4)【分析】根據(jù)移動方法與規(guī)律發(fā)現(xiàn),隨著盤子數(shù)目的增多,都是分兩個階段移動,用盤子數(shù)目減1的移動次數(shù)都移動到2柱,然后把最大的盤子移動到3柱,再用同樣的次數(shù)從2柱移動到3柱,從而完成,然后根據(jù)移動次數(shù)的數(shù)據(jù)找出總的規(guī)律求解即可.【詳解】解:(1)當(dāng)時,把上面3個金屬片作為一個整體,移動的順序是:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).故答案為:(1,2),(1,3),(2,3),(1,2),(3,1),(3,2),(1,2),(1,3),(2,3),(2,1),(3,1),(2,3),(1,2),(1,3),(2,3).(2)解:設(shè)是把n個盤子從1柱移到3柱過程中移動盤子之最少次數(shù)n=1時,f(1)=1;n=2時,小盤→2柱,大盤→3柱,小柱從2柱→3柱,完成,即n=3時,小盤→3柱,中盤→2柱,小盤從3柱→2柱,大盤從1柱→3柱,小盤從2柱→1柱,中盤從2柱→3柱,小盤從1柱→3柱,完成.[用種方法把中、小兩盤移到2柱,大盤3柱;再用種方法把中、小兩盤從2柱3柱,完成],故答案為:(3)由(2)知:故答案為:(4)故答案為:【點(diǎn)睛】本題考查了歸納推理、圖形變化的規(guī)律問題,根據(jù)題目信息,得出移動次數(shù)分成兩段計(jì)數(shù),利用盤子少一個時的移動次數(shù)移動到2柱,把最大的盤子移動到3柱,然后再用同樣的次數(shù)從2柱移動到3柱,從而完成移動過程是解題的關(guān)鍵,本題對閱讀并理解題目信息的能力要求比較高.21、(1)證明見試題解析;(2)1;(3).【解析】試題分析:(1)公共角和直角兩個角相等,所以相似.(2)由(1)可得三角形相似比,設(shè)BD=x,CD,BD,BO用x表示出來,所以可得BD長.(3)同(2)原理,BD=B′D=x,AB′,B′O,BO用x表示,利用等腰三角形求BD長.試題解析:(1)證明:∵DO⊥AB,∴∠DOB=90°,∴∠ACB=∠DOB=90°,又∵∠B=∠B.∴△DOB∽△ACB.(2)∵AD平分∠CAB,DC⊥AC,DO⊥AB,∴DO=DC,在Rt△ABC中,AC=6,BC=,8,∴AB=10,∵△DOB∽△ACB,∴DO∶BO∶BD=AC∶BC∶AB=3∶4∶1,設(shè)BD=x,則DO=DC=x,BO=x,∵CD+BD=8,∴x+x=8,解得x=,1,即:BD=1.(3)∵點(diǎn)B與點(diǎn)B′關(guān)于直線DO對稱,∴∠B=∠OB′D,BO=B′O=x,BD=B′D=x,∵∠B為銳角,∴∠OB′D也為銳角,∴∠AB′D為鈍角,∴當(dāng)△AB′D是等腰三角形時,AB′=DB′,∵AB′+B′O+BO=10,∴x+x+x=10,解得x=,即BD=,∴當(dāng)△AB′D為等腰三角形時,BD=.點(diǎn)睛:角平分線問題的輔助線添加及其解題模型.①垂兩邊:如圖(1),已知平分,過點(diǎn)作,,則.②截兩邊:如圖(2),已知平分,點(diǎn)上,在上截取,則≌.③角平分線+平行線→等腰三角形:如圖(3),已知平分,,則;如圖(4),已知平分,,則.(1)(2)(3)(4)④三線合一(利用角平分線+垂線→等腰三角形):如圖(1),已知平分,且,則,.(1)22、(1)(3﹣m,0);(2);(3)見解析【分析】(1)AO=AC?OC=m?3,用線段的長度表示點(diǎn)A的坐標(biāo);(2)是等腰直角三角形,因此也是等腰直角三角形,即可得到OD=OA,則D(0,m?3),又由P(1,0)為拋物線頂點(diǎn),用待定系數(shù)法設(shè)頂點(diǎn)式,計(jì)算求解即可;(3)過點(diǎn)Q作QM⊥AC與點(diǎn)M,過點(diǎn)Q作QN⊥BC與點(diǎn)N,設(shè)點(diǎn)Q的坐標(biāo)為,運(yùn)用相似比求出FC,EC長的表達(dá)式,而AC=m,代入即可.【詳解】解:(1)由B(3,m)可知OC=3,BC=m,∴AC=BC=m,OA=m﹣3,∴點(diǎn)A的坐標(biāo)為(3﹣m,0)(2)∵∠ODA=∠OAD=45°∴OD=OA=m﹣3,則點(diǎn)D的坐標(biāo)是(0,m﹣3)又拋物線的頂點(diǎn)為P(1,0),且過B、D兩點(diǎn),所以可設(shè)拋物線的解析式為:得:∴拋物線的解析式為:(3)證明:過點(diǎn)Q作QM⊥AC與點(diǎn)M,過點(diǎn)Q作QN⊥BC與點(diǎn)N,設(shè)點(diǎn)Q的坐標(biāo)為,則∵QM∥CE∴△PQM∽△PEC則∵QN∥FC∴△BQN∽△BFC則又∵AC=m=4∴即為定值8【點(diǎn)睛】本題主要考查了點(diǎn)的坐標(biāo),待定系數(shù)法求二次函數(shù)解析式,相似三角形的判定與性質(zhì),合理做出輔助線,運(yùn)用相似三角形的性質(zhì)求出線段的長度是解題的關(guān)鍵.23、(1)100海里(2)約為1.956小時【分析】(1)過A作AH⊥MN于H.由方向角的定義可知∠QMB=30°,∠QMA=60°,那么∠NMA=∠QMA-∠QMB=30°.解直角△AMH中,得出AH=AM,問題得解;
(2)先根據(jù)直角三角形兩銳角互余求出∠HAM=60°,由∠MAB=15°,得出∠HAB=∠HAM-∠MAB=45°,那么△AHB是等腰直角三角形,求出BH=AH距離,然后根據(jù)時間=路程÷速度即可求解.【詳解】解:(1)如圖,過作于.∵,∴在直角中,∵,,海里,∴海里.答:點(diǎn)到航線的距離為100海里.(2)在直角中,,由(1)可知,∵∴,∴,∴輪船從處到處所用時間約為小時.答:輪船從處到處所用時間約為1.956小時.【點(diǎn)睛】本題考查了解直角三角形的應(yīng)用-方向角問題,含30°角的直角三角形的性質(zhì),等腰直角三角形的判定與性質(zhì),直角三角形兩銳角互余的性質(zhì),準(zhǔn)確作出輔助線構(gòu)造直角三角形是解題的關(guān)鍵.24、(1),,,;(2)選擇乙,理由見解析【分析】(1)利用平均數(shù)的計(jì)算公式直接計(jì)算平均分即可;將乙的成績從小到大重新排列,用中位數(shù)的定義直接寫出中位數(shù)即可;根據(jù)乙的平均數(shù)利用方差的公式計(jì)算即可;(2)結(jié)合平均數(shù)和中位數(shù)、眾數(shù)、方差三方面的特點(diǎn)進(jìn)行分析.【詳解】解:(1)甲的平均成績(環(huán)),∵乙射擊的成績從小到大從新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績的中位數(shù)(環(huán)),又∵乙射擊的成績從小到大從新排列為:3、4、6、7、7、8、8、8、9、10,∴乙射擊成績的眾數(shù):c=8(環(huán))其方差為:=×(16+9+1+0+3+4+9)==;(2)從平均成績看甲、乙二人的成績相等均為7環(huán),從中位數(shù)看甲射中7環(huán)以上的次數(shù)小于乙,從眾數(shù)看甲射中7環(huán)的次數(shù)最多而乙射中8環(huán)的次數(shù)最多,從方差看甲的成績比乙的成績穩(wěn)定,綜合以上各因素,若選派一名學(xué)生參加比賽的話,可選擇乙參賽,因?yàn)橐耀@得高分的可能更大.【點(diǎn)睛】本題考查的是條形統(tǒng)計(jì)圖和方差、平均數(shù)、中位數(shù)、眾數(shù)的綜合運(yùn)用.熟練掌握平均數(shù)的計(jì)算,理解方差的概念,能夠根據(jù)計(jì)算的數(shù)據(jù)進(jìn)行綜合分析.25、(1)76;(2)300人;(3)從平均數(shù)看,兩個小區(qū)居民對垃圾分類知識掌握情況的平均水平相同;從方差看,B小區(qū)居民對垃圾分類知識掌握的情況比A小區(qū)穩(wěn)定;從中位數(shù)看,B小區(qū)至少有一半的居民成績高于平均數(shù)【分析】(1)因?yàn)橛?0名居民,中位數(shù)應(yīng)為第25名和第26名成績的平均值,所以中位數(shù)落在第四組,再根據(jù)信息二中的表格數(shù)據(jù)可得出結(jié)果;
(2)先求出A小區(qū)超過平均數(shù)的人數(shù),即(16-1)+10=25(人),再根據(jù)小區(qū)60
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 內(nèi)蒙古開來中學(xué)2025屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析
- 2025屆廣東省深圳市格睿特高級中學(xué)生物高一上期末質(zhì)量檢測模擬試題含解析
- 福州市重點(diǎn)中學(xué)2025屆生物高三第一學(xué)期期末達(dá)標(biāo)測試試題含解析
- 上海市松江區(qū)市級名校2025屆高二生物第一學(xué)期期末學(xué)業(yè)水平測試試題含解析
- 2024年合同樣本 員工合同樣本
- 2024年房屋建筑監(jiān)理合同范本
- 2024年財(cái)產(chǎn)租賃合同
- 甘肅省蘭州市蘭煉一中2025屆數(shù)學(xué)高一上期末統(tǒng)考試題含解析
- 2025屆云南省云縣第一中學(xué)數(shù)學(xué)高三上期末聯(lián)考試題含解析
- 2025屆江蘇省丹陽市丹陽高級中學(xué)高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析
- 稅務(wù)師涉稅服務(wù)相關(guān)法律真題2021年
- 2024年太倉市城市建設(shè)投資集團(tuán)限公司公開招聘3人高頻難、易錯點(diǎn)500題模擬試題附帶答案詳解
- 合同審查之思維體系與實(shí)務(wù)技能
- 護(hù)理新穎課題
- 統(tǒng)編版(2024新版)道德與法治七年級上冊13.1《在勞動中創(chuàng)造人生價值》教案
- 臥床患者常見并發(fā)癥
- 并網(wǎng)光伏電站項(xiàng)目工程投入的主要材料施工機(jī)械設(shè)備及主要施工機(jī)械進(jìn)場計(jì)劃
- 2024至2030年中國超短波電臺行業(yè)產(chǎn)銷形勢與應(yīng)用規(guī)模預(yù)測報告
- 人教版2024-2025學(xué)年七年級地理上冊 第一章 地球【單元測試卷】
- 醫(yī)療保障基金相關(guān)制度、政策培訓(xùn)通知、總結(jié)、簡報整改報告
- 中煤鄂州能源開發(fā)有限公司考試題
評論
0/150
提交評論