版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)全集,集合,,則()A. B. C. D.2.設(shè)雙曲線(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過F作AF的垂線與雙曲線交于B,C兩點(diǎn),過B,C分別作AC,AB的垂線交于點(diǎn)D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.3.若平面向量,滿足,則的最大值為()A. B. C. D.4.設(shè)M是邊BC上任意一點(diǎn),N為AM的中點(diǎn),若,則的值為()A.1 B. C. D.5.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.6.甲、乙兩名學(xué)生的六次數(shù)學(xué)測(cè)驗(yàn)成績(jī)(百分制)的莖葉圖如圖所示.①甲同學(xué)成績(jī)的中位數(shù)大于乙同學(xué)成績(jī)的中位數(shù);②甲同學(xué)的平均分比乙同學(xué)的平均分高;③甲同學(xué)的平均分比乙同學(xué)的平均分低;④甲同學(xué)成績(jī)的方差小于乙同學(xué)成績(jī)的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④7.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件8.已知定義在上函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,且,若,則()A.0 B.1 C.673 D.6749.設(shè)是兩條不同的直線,是兩個(gè)不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則10.拋物線y2=ax(a>0)的準(zhǔn)線與雙曲線C:x28A.8 B.6 C.4 D.211.已知函數(shù),則下列結(jié)論錯(cuò)誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個(gè)單位長(zhǎng)度得到12.已知雙曲線的左焦點(diǎn)為,直線經(jīng)過點(diǎn)且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點(diǎn),,若,則該雙曲線的離心率為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.14.在各項(xiàng)均為正數(shù)的等比數(shù)列中,,且,成等差數(shù)列,則___________.15.已知橢圓:的左、右焦點(diǎn)分別為,,如圖是過且垂直于長(zhǎng)軸的弦,則的內(nèi)切圓方程是________.16.動(dòng)點(diǎn)到直線的距離和他到點(diǎn)距離相等,直線過且交點(diǎn)的軌跡于兩點(diǎn),則以為直徑的圓必過_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若對(duì)任意x0,f(x)0恒成立,求實(shí)數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2(x1x2),證明:.18.(12分)在極坐標(biāo)系中,曲線的極坐標(biāo)方程為(1)求曲線與極軸所在直線圍成圖形的面積;(2)設(shè)曲線與曲線交于,兩點(diǎn),求.19.(12分)從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說明理由.20.(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當(dāng)時(shí),證明:對(duì)任意恒成立.21.(12分)已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求的取值范圍;(2)若函數(shù)在區(qū)間上恰有3個(gè)零點(diǎn),且,求的取值范圍.22.(10分)如圖,已知橢圓的右焦點(diǎn)為,,為橢圓上的兩個(gè)動(dòng)點(diǎn),周長(zhǎng)的最大值為8.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)直線經(jīng)過,交橢圓于點(diǎn),,直線與直線的傾斜角互補(bǔ),且交橢圓于點(diǎn),,,求證:直線與直線的交點(diǎn)在定直線上.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
求解不等式,得到集合A,B,利用交集、補(bǔ)集運(yùn)算即得解【詳解】由于故集合或故集合故選:D【點(diǎn)睛】本題考查了集合的交集和補(bǔ)集混合運(yùn)算,考查了學(xué)生概念理解,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2.A【解析】
由題意,根據(jù)雙曲線的對(duì)稱性知在軸上,設(shè),則由得:,因?yàn)榈街本€的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.3.C【解析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達(dá),利用向量數(shù)量積的性質(zhì),化簡(jiǎn)為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點(diǎn)睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達(dá)是本題的關(guān)鍵點(diǎn).本題屬中檔題.4.B【解析】
設(shè),通過,再利用向量的加減運(yùn)算可得,結(jié)合條件即可得解.【詳解】設(shè),則有.又,所以,有.故選B.【點(diǎn)睛】本題考查了向量共線及向量運(yùn)算知識(shí),利用向量共線及向量運(yùn)算知識(shí),用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.5.B【解析】
由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點(diǎn)睛】本題考查了利用三視圖求幾何體體積的問題,是基礎(chǔ)題.6.A【解析】
由莖葉圖中數(shù)據(jù)可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據(jù)數(shù)據(jù)集中程度判斷④.【詳解】由莖葉圖可得甲同學(xué)成績(jī)的中位數(shù)為,乙同學(xué)成績(jī)的中位數(shù)為,故①錯(cuò)誤;,,則,故②錯(cuò)誤,③正確;顯然甲同學(xué)的成績(jī)更集中,即波動(dòng)性更小,所以方差更小,故④正確,故選:A【點(diǎn)睛】本題考查由莖葉圖分析數(shù)據(jù)特征,考查由莖葉圖求中位數(shù)、平均數(shù).7.B【解析】
試題分析:通過逆否命題的同真同假,結(jié)合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據(jù)互為逆否命題的等價(jià)性知,“若q則”為真,“若則q”為假,故選B.考點(diǎn):邏輯命題8.B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個(gè)周期內(nèi)的和是0,利用函數(shù)周期性對(duì)所求式子進(jìn)行化簡(jiǎn)可得.【詳解】因?yàn)闉槠婧瘮?shù),故;因?yàn)?,故,可知函?shù)的周期為3;在中,令,故,故函數(shù)在一個(gè)周期內(nèi)的函數(shù)值和為0,故.故選:B.【點(diǎn)睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.9.C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設(shè)是兩條不同的直線,是兩個(gè)不同的平面,則:在A中,若,,則與相交或平行,故A錯(cuò)誤;在B中,若,,則或,故B錯(cuò)誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯(cuò)誤.故選C.【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),是中檔題.10.A【解析】
求得拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,解得兩交點(diǎn),由三角形的面積公式,計(jì)算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準(zhǔn)線為x=-a4,雙曲線C:x28-y24【點(diǎn)睛】本題考查三角形的面積的求法,注意運(yùn)用拋物線的準(zhǔn)線方程和雙曲線的漸近線方程,考查運(yùn)算能力,屬于基礎(chǔ)題.11.D【解析】
由可判斷選項(xiàng)A;當(dāng)時(shí),可判斷選項(xiàng)B;利用整體換元法可判斷選項(xiàng)C;可判斷選項(xiàng)D.【詳解】由題知,最小正周期,所以A正確;當(dāng)時(shí),,所以B正確;當(dāng)時(shí),,所以C正確;由的圖象向左平移個(gè)單位,得,所以D錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對(duì)稱性、單調(diào)性以及圖象變換后的解析式等知識(shí),是一道中檔題.12.A【解析】
直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點(diǎn)坐標(biāo)縱坐標(biāo)關(guān)系進(jìn)行求解即可.【詳解】由題意可知直線的方程為,不妨設(shè).則,且將代入雙曲線方程中,得到設(shè)則由,可得,故則,解得則所以雙曲線離心率故選:A【點(diǎn)睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點(diǎn)坐標(biāo)關(guān)系和已知條件即可求解,屬于一般性題目.二、填空題:本題共4小題,每小題5分,共20分。13.55【解析】
由求出.由,可得,兩式相減,可得數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,即求.【詳解】由題意,當(dāng)n=1時(shí),,當(dāng)時(shí),由,可得,兩式相減,可得,整理得,,即,∴數(shù)列是以1為首項(xiàng),1為公差的等差數(shù)列,.故答案為:55.【點(diǎn)睛】本題考查求數(shù)列的前項(xiàng)和,屬于基礎(chǔ)題.14.【解析】
利用等差中項(xiàng)的性質(zhì)和等比數(shù)列通項(xiàng)公式得到關(guān)于的方程,解方程求出代入等比數(shù)列通項(xiàng)公式即可.【詳解】因?yàn)?,成等差?shù)列,所以,由等比數(shù)列通項(xiàng)公式得,,所以,解得或,因?yàn)?,所以,所以等比?shù)列的通項(xiàng)公式為.故答案為:【點(diǎn)睛】本題考查等差中項(xiàng)的性質(zhì)和等比數(shù)列通項(xiàng)公式;考查運(yùn)算求解能力和知識(shí)綜合運(yùn)用能力;熟練掌握等差中項(xiàng)和等比數(shù)列通項(xiàng)公式是求解本題的關(guān)鍵;屬于中檔題.15.【解析】
利用公式計(jì)算出,其中為的周長(zhǎng),為內(nèi)切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標(biāo).【詳解】由已知,,,,設(shè)內(nèi)切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內(nèi)切圓方程為.故答案為:.【點(diǎn)睛】本題考查橢圓中三角形內(nèi)切圓的方程問題,涉及到橢圓焦點(diǎn)三角形、橢圓的定義等知識(shí),考查學(xué)生的運(yùn)算能力,是一道中檔題.16.【解析】
利用動(dòng)點(diǎn)到直線的距離和他到點(diǎn)距離相等,,可知?jiǎng)狱c(diǎn)的軌跡是以為焦點(diǎn)的拋物線,從而可求曲線的方程,將,代入,利用韋達(dá)定理,可得,從而可知以為直徑的圓經(jīng)過原點(diǎn)O.【詳解】設(shè)點(diǎn),由題意可得,,,可得,設(shè)直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經(jīng)過原點(diǎn).故答案為:(0,0)【點(diǎn)睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時(shí)考查了方程的思想和韋達(dá)定理,考查了運(yùn)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析.【解析】
(1)求出,判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對(duì)分和兩種情況討論,構(gòu)造函數(shù),利用放縮法和基本不等式證明結(jié)論.【詳解】(1)由,得.令.當(dāng)時(shí),;當(dāng)時(shí),;在上單調(diào)遞增,在上單調(diào)遞減,.對(duì)任意恒成立,.(2)證明:由(1)可知,在上單調(diào)遞增,在上單調(diào)遞減,.若,則,令在上單調(diào)遞增,,.又,在上單調(diào)遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)解決不等式恒成立問題,利用導(dǎo)數(shù)證明不等式,屬于難題.18.(1);(2)【解析】
(1)利用互化公式,將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,得出曲線與極軸所在直線圍成的圖形是一個(gè)半徑為1的圓周及一個(gè)兩直角邊分別為1與的直角三角形,即可求出面積;(2)聯(lián)立方程組,分別求出和的坐標(biāo),即可求出.【詳解】解:(1)由于的極坐標(biāo)方程為,根據(jù)互化公式得,曲線的直角坐標(biāo)方程為:當(dāng)時(shí),,當(dāng)時(shí),,則曲線與極軸所在直線圍成的圖形,是一個(gè)半徑為1的圓周及一個(gè)兩直角邊分別為1與的直角三角形,∴圍成圖形的面積.(2)由得,其直角坐標(biāo)為,化直角坐標(biāo)方程為,化直角坐標(biāo)方程為,∴,∴.【點(diǎn)睛】本題考查利用互化公式將極坐標(biāo)方程化為直角坐標(biāo)方程,以及聯(lián)立方程組求交點(diǎn)坐標(biāo),考查計(jì)算能力.19.(1);(2)①證明見解析;②能,.【解析】
(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)①設(shè),,寫出切線的方程,解方程組求出點(diǎn)的坐標(biāo).設(shè)點(diǎn),直線AB的方程,代入拋物線方程,利用韋達(dá)定理得到點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點(diǎn)Q的坐標(biāo).【詳解】(1)因?yàn)?,所以,即拋物線C的方程是.(2)①證明:由得,.設(shè),,則直線PA的方程為(ⅰ),則直線PB的方程為(ⅱ),由(ⅰ)和(ⅱ)解得:,,所以.設(shè)點(diǎn),則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點(diǎn)坐標(biāo)為,即,又因?yàn)橹本€PQ的方程為,所以線段CD的中點(diǎn)在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當(dāng)點(diǎn)Q為,即為拋物線的焦點(diǎn)時(shí),四邊形是矩形.【點(diǎn)睛】本題考查拋物線的方程,考查直線和拋物線的位置關(guān)系,屬于難題.20.(1)(2)見解析【解析】
(1)因?yàn)?,可得,即可求得答案;?)要證對(duì)任意恒成立,即證對(duì)任意恒成立.設(shè),,當(dāng)時(shí),,即可求得答案.【詳解】(1),,,函數(shù)在處的切線方程為.(2)要證對(duì)任意恒成立.即證對(duì)任意恒成立.設(shè),,當(dāng)時(shí),,,令,解得,當(dāng)時(shí),,函數(shù)在上單調(diào)遞減;當(dāng)時(shí),,函數(shù)在上單調(diào)遞增.,,,當(dāng)時(shí),對(duì)任意恒成立,即當(dāng)時(shí),對(duì)任意恒成立.【點(diǎn)睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關(guān)鍵是掌握由導(dǎo)數(shù)求切線方程的解法和根據(jù)導(dǎo)數(shù)求證不等式恒成立的方法,考查了分析能力和計(jì)算能力,屬于難題.21.(1);(2).【解析】
(1)求出,再求恒成立,以及恒成立時(shí),的取值范圍;(2)由已知,在區(qū)間內(nèi)恰有一個(gè)零點(diǎn),轉(zhuǎn)化為在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),由(1)的結(jié)論對(duì)分類討論,根據(jù)單調(diào)性,結(jié)合零點(diǎn)存在性定理,即可求出結(jié)論.【詳解】(1)由題意得,則,當(dāng)函數(shù)在區(qū)間上單調(diào)遞增時(shí),在區(qū)間上恒成立.∴(其中),解得.當(dāng)函數(shù)在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國(guó)定制酒行業(yè)營(yíng)銷創(chuàng)新模式及未來5發(fā)展趨勢(shì)報(bào)告
- 2024年物流駕駛員服務(wù)外包合同
- 眉山職業(yè)技術(shù)學(xué)院《災(zāi)害衛(wèi)生學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年度拍賣藝術(shù)品線上線下銷售合作協(xié)議范本3篇
- 馬鞍山職業(yè)技術(shù)學(xué)院《企業(yè)經(jīng)營(yíng)實(shí)戰(zhàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 馬鞍山學(xué)院《機(jī)器學(xué)習(xí)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年模具設(shè)計(jì)與生產(chǎn)合同
- 洛陽職業(yè)技術(shù)學(xué)院《公共衛(wèi)生理論和實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年連云港貨運(yùn)上崗證模擬考試0題
- 2024年古建筑修復(fù)施工勞務(wù)分包合同范本及細(xì)則2篇
- 期末綜合卷(含答案) 2024-2025學(xué)年蘇教版數(shù)學(xué)六年級(jí)上冊(cè)
- 2025春夏運(yùn)動(dòng)戶外行業(yè)趨勢(shì)白皮書
- 中醫(yī)筋傷的治療
- 【MOOC】英文技術(shù)寫作-東南大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 護(hù)理產(chǎn)科健康教育
- 2024年21起典型火災(zāi)案例及消防安全知識(shí)專題培訓(xùn)(消防月)
- 人教版四年級(jí)上冊(cè)數(shù)學(xué)【選擇題】專項(xiàng)練習(xí)100題附答案
- 從創(chuàng)意到創(chuàng)業(yè)智慧樹知到期末考試答案章節(jié)答案2024年湖南師范大學(xué)
- DL-T 1476-2023 電力安全工器具預(yù)防性試驗(yàn)規(guī)程
- 國(guó)開《Windows網(wǎng)絡(luò)操作系統(tǒng)管理》形考任務(wù)4-配置故障轉(zhuǎn)移群集服務(wù)實(shí)訓(xùn)
- 計(jì)價(jià)格[1999]1283號(hào)_建設(shè)項(xiàng)目前期工作咨詢收費(fèi)暫行規(guī)定
評(píng)論
0/150
提交評(píng)論