版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集,集合,,則()A. B. C. D.2.設雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.3.若平面向量,滿足,則的最大值為()A. B. C. D.4.設M是邊BC上任意一點,N為AM的中點,若,則的值為()A.1 B. C. D.5.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.6.甲、乙兩名學生的六次數(shù)學測驗成績(百分制)的莖葉圖如圖所示.①甲同學成績的中位數(shù)大于乙同學成績的中位數(shù);②甲同學的平均分比乙同學的平均分高;③甲同學的平均分比乙同學的平均分低;④甲同學成績的方差小于乙同學成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④7.若P是的充分不必要條件,則p是q的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件8.已知定義在上函數(shù)的圖象關于原點對稱,且,若,則()A.0 B.1 C.673 D.6749.設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則10.拋物線y2=ax(a>0)的準線與雙曲線C:x28A.8 B.6 C.4 D.211.已知函數(shù),則下列結論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關于點對稱C.函數(shù)在上單調遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到12.已知雙曲線的左焦點為,直線經過點且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點,,若,則該雙曲線的離心率為().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設Sn為數(shù)列{an}的前n項和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.14.在各項均為正數(shù)的等比數(shù)列中,,且,成等差數(shù)列,則___________.15.已知橢圓:的左、右焦點分別為,,如圖是過且垂直于長軸的弦,則的內切圓方程是________.16.動點到直線的距離和他到點距離相等,直線過且交點的軌跡于兩點,則以為直徑的圓必過_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若對任意x0,f(x)0恒成立,求實數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個不同的零點x1,x2(x1x2),證明:.18.(12分)在極坐標系中,曲線的極坐標方程為(1)求曲線與極軸所在直線圍成圖形的面積;(2)設曲線與曲線交于,兩點,求.19.(12分)從拋物線C:()外一點作該拋物線的兩條切線PA、PB(切點分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點Q,點在拋物線C上,且(F為拋物線的焦點).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點Q的坐標;若不能,請說明理由.20.(12分)已知函數(shù),.(1)求函數(shù)在處的切線方程;(2)當時,證明:對任意恒成立.21.(12分)已知函數(shù),其中為自然對數(shù)的底數(shù).(1)若函數(shù)在區(qū)間上是單調函數(shù),試求的取值范圍;(2)若函數(shù)在區(qū)間上恰有3個零點,且,求的取值范圍.22.(10分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標準方程;(Ⅱ)直線經過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.2.A【解析】
由題意,根據雙曲線的對稱性知在軸上,設,則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.3.C【解析】
可根據題意把要求的向量重新組合成已知向量的表達,利用向量數(shù)量積的性質,化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點睛】本題主要考查根據已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關鍵點.本題屬中檔題.4.B【解析】
設,通過,再利用向量的加減運算可得,結合條件即可得解.【詳解】設,則有.又,所以,有.故選B.【點睛】本題考查了向量共線及向量運算知識,利用向量共線及向量運算知識,用基底向量向量來表示所求向量,利用平面向量表示法唯一來解決問題.5.B【解析】
由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點睛】本題考查了利用三視圖求幾何體體積的問題,是基礎題.6.A【解析】
由莖葉圖中數(shù)據可求得中位數(shù)和平均數(shù),即可判斷①②③,再根據數(shù)據集中程度判斷④.【詳解】由莖葉圖可得甲同學成績的中位數(shù)為,乙同學成績的中位數(shù)為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數(shù)據特征,考查由莖葉圖求中位數(shù)、平均數(shù).7.B【解析】
試題分析:通過逆否命題的同真同假,結合充要條件的判斷方法判定即可.由p是的充分不必要條件知“若p則”為真,“若則p”為假,根據互為逆否命題的等價性知,“若q則”為真,“若則q”為假,故選B.考點:邏輯命題8.B【解析】
由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉化到已知解析式的函數(shù)定義域內求解.9.C【解析】
在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.10.A【解析】
求得拋物線的準線方程和雙曲線的漸近線方程,解得兩交點,由三角形的面積公式,計算即可得到所求值.【詳解】拋物線y2=ax(a>0)的準線為x=-a4,雙曲線C:x28-y24【點睛】本題考查三角形的面積的求法,注意運用拋物線的準線方程和雙曲線的漸近線方程,考查運算能力,屬于基礎題.11.D【解析】
由可判斷選項A;當時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當時,,所以B正確;當時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數(shù)的性質,涉及到周期性、對稱性、單調性以及圖象變換后的解析式等知識,是一道中檔題.12.A【解析】
直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點坐標縱坐標關系進行求解即可.【詳解】由題意可知直線的方程為,不妨設.則,且將代入雙曲線方程中,得到設則由,可得,故則,解得則所以雙曲線離心率故選:A【點睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點坐標關系和已知條件即可求解,屬于一般性題目.二、填空題:本題共4小題,每小題5分,共20分。13.55【解析】
由求出.由,可得,兩式相減,可得數(shù)列是以1為首項,1為公差的等差數(shù)列,即求.【詳解】由題意,當n=1時,,當時,由,可得,兩式相減,可得,整理得,,即,∴數(shù)列是以1為首項,1為公差的等差數(shù)列,.故答案為:55.【點睛】本題考查求數(shù)列的前項和,屬于基礎題.14.【解析】
利用等差中項的性質和等比數(shù)列通項公式得到關于的方程,解方程求出代入等比數(shù)列通項公式即可.【詳解】因為,成等差數(shù)列,所以,由等比數(shù)列通項公式得,,所以,解得或,因為,所以,所以等比數(shù)列的通項公式為.故答案為:【點睛】本題考查等差中項的性質和等比數(shù)列通項公式;考查運算求解能力和知識綜合運用能力;熟練掌握等差中項和等比數(shù)列通項公式是求解本題的關鍵;屬于中檔題.15.【解析】
利用公式計算出,其中為的周長,為內切圓半徑,再利用圓心到直線AB的距離等于半徑可得到圓心坐標.【詳解】由已知,,,,設內切圓的圓心為,半徑為,則,故有,解得,由,或(舍),所以的內切圓方程為.故答案為:.【點睛】本題考查橢圓中三角形內切圓的方程問題,涉及到橢圓焦點三角形、橢圓的定義等知識,考查學生的運算能力,是一道中檔題.16.【解析】
利用動點到直線的距離和他到點距離相等,,可知動點的軌跡是以為焦點的拋物線,從而可求曲線的方程,將,代入,利用韋達定理,可得,從而可知以為直徑的圓經過原點O.【詳解】設點,由題意可得,,,可得,設直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經過原點.故答案為:(0,0)【點睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時考查了方程的思想和韋達定理,考查了運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析.【解析】
(1)求出,判斷函數(shù)的單調性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對分和兩種情況討論,構造函數(shù),利用放縮法和基本不等式證明結論.【詳解】(1)由,得.令.當時,;當時,;在上單調遞增,在上單調遞減,.對任意恒成立,.(2)證明:由(1)可知,在上單調遞增,在上單調遞減,.若,則,令在上單調遞增,,.又,在上單調遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【點睛】本題考查利用導數(shù)解決不等式恒成立問題,利用導數(shù)證明不等式,屬于難題.18.(1);(2)【解析】
(1)利用互化公式,將曲線的極坐標方程化為直角坐標方程,得出曲線與極軸所在直線圍成的圖形是一個半徑為1的圓周及一個兩直角邊分別為1與的直角三角形,即可求出面積;(2)聯(lián)立方程組,分別求出和的坐標,即可求出.【詳解】解:(1)由于的極坐標方程為,根據互化公式得,曲線的直角坐標方程為:當時,,當時,,則曲線與極軸所在直線圍成的圖形,是一個半徑為1的圓周及一個兩直角邊分別為1與的直角三角形,∴圍成圖形的面積.(2)由得,其直角坐標為,化直角坐標方程為,化直角坐標方程為,∴,∴.【點睛】本題考查利用互化公式將極坐標方程化為直角坐標方程,以及聯(lián)立方程組求交點坐標,考查計算能力.19.(1);(2)①證明見解析;②能,.【解析】
(1)根據拋物線的定義,求出,即可求拋物線C的方程;(2)①設,,寫出切線的方程,解方程組求出點的坐標.設點,直線AB的方程,代入拋物線方程,利用韋達定理得到點的坐標,寫出點的坐標,,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點Q的坐標.【詳解】(1)因為,所以,即拋物線C的方程是.(2)①證明:由得,.設,,則直線PA的方程為(?。?,則直線PB的方程為(ⅱ),由(ⅰ)和(ⅱ)解得:,,所以.設點,則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點坐標為,即,又因為直線PQ的方程為,所以線段CD的中點在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當點Q為,即為拋物線的焦點時,四邊形是矩形.【點睛】本題考查拋物線的方程,考查直線和拋物線的位置關系,屬于難題.20.(1)(2)見解析【解析】
(1)因為,可得,即可求得答案;(2)要證對任意恒成立,即證對任意恒成立.設,,當時,,即可求得答案.【詳解】(1),,,函數(shù)在處的切線方程為.(2)要證對任意恒成立.即證對任意恒成立.設,,當時,,,令,解得,當時,,函數(shù)在上單調遞減;當時,,函數(shù)在上單調遞增.,,,當時,對任意恒成立,即當時,對任意恒成立.【點睛】本題主要考查了求曲線的切線方程和求證不等式恒成立問題,解題關鍵是掌握由導數(shù)求切線方程的解法和根據導數(shù)求證不等式恒成立的方法,考查了分析能力和計算能力,屬于難題.21.(1);(2).【解析】
(1)求出,再求恒成立,以及恒成立時,的取值范圍;(2)由已知,在區(qū)間內恰有一個零點,轉化為在區(qū)間內恰有兩個零點,由(1)的結論對分類討論,根據單調性,結合零點存在性定理,即可求出結論.【詳解】(1)由題意得,則,當函數(shù)在區(qū)間上單調遞增時,在區(qū)間上恒成立.∴(其中),解得.當函數(shù)在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 7S與現(xiàn)場管理課件
- 存在管理制度不規(guī)范規(guī)章制度
- 市場部(銷售)勝任力素質模型庫
- 福建廈門大同中學2024屆高三年級校內模擬數(shù)學試題試卷(最后一卷)
- 2024年鄭州客運資格專業(yè)能力考試題庫
- 2024年青海辦理客運從業(yè)資格證版試題
- 2024年天津客運運輸從業(yè)資格證模擬考試題
- 2024年海南辦理客運從業(yè)資格證版試題
- 人教部編版二年級語文上冊第13課《寒號鳥》精美課件
- 吉首大學《合唱與合唱指揮1》2021-2022學年第一學期期末試卷
- 第5課 中古時期的非洲和美洲(課件)
- MOOC 法理學-西南政法大學 中國大學慕課答案
- 中華民族共同體概論課件專家版3第三講 文明初現(xiàn)與中華民族起源(史前時期)
- 心律失常的用藥及護理
- 消防安全 牢記心間
- HJ 1188-2021 核醫(yī)學輻射防護與安全要求(標準網-www.biaozhun.org)
- (高清版)DZT 0399-2022 礦山資源儲量管理規(guī)范
- 五年級上冊數(shù)學教學設計-植樹問題 人教版
- 清明節(jié)(節(jié)氣)主題課件
- 家長會課件:初一上學期期中考試后的家長會課件
- 人工智能機器人科普小知識
評論
0/150
提交評論