2022-2023學(xué)年云南省昆明市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年云南省昆明市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年云南省昆明市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年云南省昆明市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年云南省昆明市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年云南省昆明市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.A.3x2+C

B.

C.x3+C

D.

2.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx

3.

4.A.

B.0

C.

D.

5.已知斜齒輪上A點(diǎn)受到另一齒輪對(duì)它作用的捏合力Fn,F(xiàn)n沿齒廓在接觸處的公法線方向,且垂直于過(guò)A點(diǎn)的齒面的切面,如圖所示,α為壓力角,β為斜齒輪的螺旋角。下列關(guān)于一些力的計(jì)算有誤的是()。

A.圓周力FT=Fncosαcosβ

B.徑向力Fa=Fncosαcosβ

C.軸向力Fr=Fncosα

D.軸向力Fr=Fnsinα

6.設(shè)y=2x3,則dy=().

A.2x2dx

B.6x2dx

C.3x2dx

D.x2dx

7.()。A.2ex+C

B.ex+C

C.2e2x+C

D.e2x+C

8.

9.

10.在空間中,方程y=x2表示()A.xOy平面的曲線B.母線平行于Oy軸的拋物柱面C.母線平行于Oz軸的拋物柱面D.拋物面

11.

12.下列關(guān)系式正確的是()A.A.

B.

C.

D.

13.

A.絕對(duì)收斂

B.條件收斂

C.發(fā)散

D.收斂性不能判定

14.微分方程y''-2y'=x的特解應(yīng)設(shè)為

A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c

15.在空間直角坐標(biāo)系中方程y2=x表示的是

A.拋物線B.柱面C.橢球面D.平面

16.A.A.5B.3C.-3D.-5

17.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

18.微分方程y′-y=0的通解為().

A.y=ex+C

B.y=e-x+C

C.y=Cex

D.y=Ce-x

19.函數(shù)在(-3,3)內(nèi)展開(kāi)成x的冪級(jí)數(shù)是()。

A.

B.

C.

D.

20.鋼筋混凝土軸心受拉構(gòu)件正截面承載力計(jì)算時(shí),用以考慮縱向彎曲彎曲影響的系數(shù)是()。

A.偏心距增大系數(shù)B.可靠度調(diào)整系數(shù)C.結(jié)構(gòu)重要性系數(shù)D.穩(wěn)定系數(shù)

21.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx

22.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x2)B.x2f(x2)C.xf(x2)D.2xf(x2)

23.

24.

25.曲線y=x+(1/x)的凹區(qū)間是

A.(-∞,-1)B.(-1,+∞)C.(-∞,0)D.(0,+∞)

26.A.A.

B.

C.

D.

27.A.(1/3)x3

B.x2

C.2xD.(1/2)x

28.A.A.4/3B.1C.2/3D.1/3

29.

30.A.

B.

C.

D.

31.

32.A.A.-3/2B.3/2C.-2/3D.2/3

33.()。A.為無(wú)窮小B.為無(wú)窮大C.不存在,也不是無(wú)窮大D.為不定型

34.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

35.下列等式成立的是()。

A.

B.

C.

D.

36.

37.方程y'-3y'+2y=xe2x的待定特解y*應(yīng)取().A.A.Axe2x

B.(Ax+B)e2x

C.Ax2e2x

D.x(Ax+B)e2x

38.A.f(1)-f(0)

B.2[f(1)-f(0)]

C.2[f(2)-f(0)]

D.

39.

40.A.沒(méi)有漸近線B.僅有水平漸近線C.僅有鉛直漸近線D.既有水平漸近線,又有鉛直漸近線41.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

42.

43.

44.

45.微分方程y''-2y'=x的特解應(yīng)設(shè)為A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+C46.A.A.

B.

C.

D.

47.

48.

49.

50.

二、填空題(20題)51.52.53.

54.

55.56.y=x3-27x+2在[1,2]上的最大值為_(kāi)_____.57.設(shè)Ф(x)=∫0xln(1+t)dt,則Ф"(x)=________。

58.

59.60.

61.

62.

63.

64.

65.66.67.

68.

69.曲線y=x3-3x+2的拐點(diǎn)是__________。

70.

三、計(jì)算題(20題)71.

72.求微分方程y"-4y'+4y=e-2x的通解.

73.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.74.求微分方程的通解.75.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.76.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

77.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).78.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).79.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則80.證明:81.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

82.

83.

84.85.

86.

87.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

88.89.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.90.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)91.

92.

93.展開(kāi)成x-1的冪級(jí)數(shù),并指明收斂區(qū)間(不考慮端點(diǎn))。

94.

95.計(jì)算其中D是由y=x,x=0,y=1圍成的平面區(qū)域.96.設(shè)函數(shù)f(x)=2x+In(3x+2),求f''(0).97.設(shè)z=z(x,y)由x2+2y2+3z2+yz=1確定,求98.99.100.五、高等數(shù)學(xué)(0題)101.求df(x)。六、解答題(0題)102.已知曲線C的方程為y=3x2,直線ι的方程為y=6x。求由曲線C與直線ι圍成的平面圖形的面積S。

參考答案

1.B

2.B

3.D

4.A

5.C

6.B由微分基本公式及四則運(yùn)算法則可求得.也可以利用dy=y′dx求得故選B.

7.B

8.D解析:

9.A

10.C方程F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,故選C。

11.C解析:

12.C

13.A

14.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。

因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

15.B解析:空間中曲線方程應(yīng)為方程組,故A不正確;三元一次方程表示空間平面,故D不正確;空間中,缺少一維坐標(biāo)的方程均表示柱面,可知應(yīng)選B。

16.Cf(x)為分式,當(dāng)x=-3時(shí),分式的分母為零,f(x)沒(méi)有定義,因此

x=-3為f(x)的間斷點(diǎn),故選C。

17.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

18.C所給方程為可分離變量方程.

19.B

20.D

21.B

22.D解析:

23.B解析:

24.C解析:

25.D解析:

26.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算.

27.C本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。

Y=x2+1,(dy)/(dx)=2x

28.C

29.B

30.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。

31.C

32.A

33.D

34.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

35.C

36.B解析:

37.D本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性非齊次微分方程特解y*的取法:

若自由項(xiàng)f(x)=Pn(x)eαx,當(dāng)α不為特征根時(shí),可設(shè)特解為

y*=Qn(x)eαx,

Qn(x)為x的待定n次多項(xiàng)式.

當(dāng)α為單特征根時(shí),可設(shè)特解為

y*=xQn(x)eαx,

當(dāng)α為二重特征根時(shí),可設(shè)特解為

y*=x2Qn(x)eαx.

所給方程對(duì)應(yīng)齊次方程的特征方程為

r2-3r+2=0.

特征根為r1=1,r2=2.

自由項(xiàng)f(x)=xe2x,相當(dāng)于α=2為單特征根.又因?yàn)镻n(x)為一次式,因此應(yīng)選D.

38.D本題考查的知識(shí)點(diǎn)為定積分的性質(zhì);牛頓-萊布尼茨公式.

可知應(yīng)選D.

39.A

40.D本題考查了曲線的漸近線的知識(shí)點(diǎn),

41.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。

由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。

可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。

42.B解析:

43.A

44.C

45.C因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

46.C

47.A

48.B

49.D

50.D51.本題考查的知識(shí)點(diǎn)為定積分的基本公式。52.1

53.π/4本題考查了定積分的知識(shí)點(diǎn)。

54.[-11)55.

本題考查的知識(shí)點(diǎn)為定積分計(jì)算.

可以利用變量替換,令u=2x,則du=2dx,當(dāng)x=0時(shí),u=0;當(dāng)x=1時(shí),u=2.因此

56.-24本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),常可以利用導(dǎo)數(shù)判定f(x)在[a,b]上的最值:

(1)求出f'(x).

(2)求出f(x)在(a,b)內(nèi)的駐點(diǎn)x1,…,xk.

(3)比較f(x1),f(x2),…,f(xk),f(a),f(b).其中最大(小)值為f(x)在[a,b]上的最大(小)值,相應(yīng)的點(diǎn)x為f(x)的最大(小)值點(diǎn).

y=x3-27x+2,

則y'=3x2-27=3(x-3)(x+3),

令y'=0得y的駐點(diǎn)x1=-3,x2=3,可知這兩個(gè)駐點(diǎn)都不在(1,2)內(nèi).

由于f(1)=-24,f(2)=-44,可知y=x3-27x+2在[1,2]上的最大值為-24.

本題考生中出現(xiàn)的錯(cuò)誤多為求出駐點(diǎn)x1=-3,x2=3之后,直接比較

f(-3)=56,f(3)=-52,f(1)=-24,f(2)=-44,

得出y=x3-27x+2在[1,2]上的最大值為f(-3)=56.其錯(cuò)誤的原因是沒(méi)有判定駐點(diǎn)x1=-3,x2=3是否在給定的區(qū)間(1,2)內(nèi),這是值得考生注意的問(wèn)題.在模擬試題中兩次出現(xiàn)這類問(wèn)題,目的就是希望能引起考生的重視.

本題還可以采用下列解法:注意到y(tǒng)'=3(x-3)(x+3),在區(qū)間[1,2]上有y'<0,因此y為單調(diào)減少函數(shù)??芍?/p>

x=2為y的最小值點(diǎn),最小值為y|x=2=-44.

x=1為y的最大值點(diǎn),最大值為y|x=1=-24.57.用變上限積分公式(∫0xf(t)dt)"=f(x),則Ф"(x)=ln(1+x),Ф"(x)=。

58.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

59.

本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.

60.61.0.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最小值問(wèn)題.

通常求解的思路為:

62.2

63.3x2siny

64.

65.tanθ-cotθ+C

66.

本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

若利用極限公式

如果利用無(wú)窮大量與無(wú)窮小量關(guān)系,直接推導(dǎo),可得

67.

本題考查的知識(shí)點(diǎn)為二重積分的性質(zhì).

68.

69.(02)

70.x(asinx+bcosx)

71.

72.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

73.

74.75.由二重積分物理意義知

76.

77.

列表:

說(shuō)明

78.79.由等價(jià)無(wú)窮小量的定義可知

80.

81.

82.

83.

84.

85.由一階線性微分方程通解公式有

86.

87.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

88.89.函數(shù)的定義域?yàn)?/p>

注意

90.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

91.

92.

93.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論