版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023/2/212023/2/222023/2/232023/2/244月7日-9日,尼泊爾地理學(xué)會在加德滿都舉行第七屆尼泊爾地理學(xué)大會。會上,一份最新的研究向世界各地的科學(xué)家做了陳述:在尼泊爾全境中,加德滿都往西與博克拉之間地區(qū)是該國發(fā)生地震風險最高的地方。這份研究目前已提交給國際頂級學(xué)術(shù)期刊《自然》,正在審核之中。“如果要發(fā)生地震,就會是在這個地方?!弊蛉眨撗芯繀⑴c者、新加坡南洋理工大學(xué)教授保羅·塔珀尼爾對新京報記者說。
4月25日,尼泊爾發(fā)生8.1級地震,就在預(yù)料的地方。地震區(qū)域被預(yù)測“最可能出大震”在該研究之前,塔珀尼爾和他的科學(xué)家們曾多次發(fā)表研究論文,評估喜馬拉雅地震帶再次發(fā)生大震的可能性?!蹲匀弧冯s志也撰文稱,一場強震可能在喜馬拉雅地區(qū)隨時發(fā)生。在尼泊爾8.1級地震附近地區(qū)連續(xù)發(fā)生2次7級地震2023/2/25根據(jù)塔珀尼爾和波林格等人最新的研究,他們預(yù)料中的強震會出現(xiàn)在加德滿都往西與博克拉之間地區(qū)?!斑@里是尼泊爾最危險的地方,因為過去600多年沒有發(fā)生大地震,在尼泊爾所有可能發(fā)生地震的地方,這里是最可能出現(xiàn)大震的?!彼昴釥栒f,此次地震就發(fā)生在當時預(yù)測的地區(qū),只不過,破裂帶在加德滿都往西150公里之外終止了,而他們預(yù)料中的地震破裂可能還會更往西一點。除此之外,研究者預(yù)料中的地震還可能更大一些,“沒有我們想象的那么大,我們現(xiàn)在不知道地下的能量是否大部分被釋放出來?!彼昴釥栒f,如果沒有的話,或許在加德滿都以西還會再發(fā)生一次大震。尼泊爾地震,是科學(xué)家們預(yù)料之中的嗎?2023/2/26預(yù)料預(yù)測“這完全不是預(yù)測。我們沒法預(yù)測地震?!彼昴釥栒f,預(yù)測地震意味著科學(xué)家知道將在哪一天或哪一年會發(fā)生大震,而他們所做的工作,只是判斷可能在什么地方發(fā)生地震,是評估一個地方的地震危險性。他說,在汶川地震后,西藏一年中發(fā)生了7次地震,很讓科學(xué)家困惑?!斑@些大震之間,肯定有個什么機制連著,是需要地震學(xué)家去了解的,某一天我們會知道,但還不是現(xiàn)在。這是非常復(fù)雜的問題,地震儀紀錄只有百年歷史,相對構(gòu)造數(shù)百萬年活動歷史來說實在是太短了,我們必須保持謹慎?!痹谒磥?,這次地震并不比他們“意料”的來得早,因為他們“意料中的地震”是在數(shù)十年的范疇中,尼泊爾這塊地方會很危險,此次發(fā)生地震的時間也屬于其預(yù)期的大體范圍中,“但具體哪天發(fā)生我們沒法知道?!?023/2/272023/2/282023/2/29第三章
體波與射線理論3.1程函方程和費馬原理
3.1.1程函方程
3.1.2費馬原理3.2射線方程(Rayequation)3.3球?qū)ΨQ介質(zhì)中的地震射線
3.3.1球?qū)ΨQ介質(zhì)中的Snell定律
3.3.2本多夫定律(Benndorf’srelation)
3.3.3走時曲線
3.3.4射線的曲率
3.3.5地球內(nèi)部速度變化對射線形狀和走時曲線的影響3.4水平分層介質(zhì)中的走時方程
3.4.1射線走時方程
3.4.2單層水平地殼模型中地震波走時曲線
3.4.3多層地殼模型中的地震震相與走時曲線3.5地震波能量在邊界上的分配
3.5.1平面波在自由界面上的反射
3.5.2平面波在界面上反射和折射
2023/2/210地震波作為一種波動也可以用射線來描述。地震波在什么情況下必須解具有邊界條件的波動方程,什么情況下把它過渡到射線理論,用簡單的幾何射線來研究地震波的傳播。我們首先要解決的問題是什么時候把波動的描述過渡到射線的描述。要實現(xiàn)波動理論向射線理論的過渡,首先要闡明在什么條件下波動地震學(xué)能夠向幾何地震學(xué)過渡,即幾何地震學(xué)在何種條件下能反映真實波動情況。3.1.1程函方程(eikonalequation)2023/2/211非均勻介質(zhì)三維空間波動方程可寫成:已知上述方程平面波的一個解:式中,r距離,j0為振幅。程函方程(eikonalequation)2023/2/212現(xiàn)在看一種特殊的狀態(tài):(或常數(shù))追蹤這個等相位面在空間的傳播。程函方程(eikonalequation)該式表明當波在介質(zhì)中傳播時,有一系列的時間tk滿足上式,即隨著時間t的增加,r/c也必須相應(yīng)增加,波動隨時間往外傳播。具有零相位的等相位面在空間中隨波的傳播而連續(xù)分布,它也是空間的函數(shù)。則令:t稱為特性函數(shù),時間場。每一個等相位面給它一個描述叫t(x,y,z),它隨時間不同而變化。2023/2/213于是波動方程的解可寫成:代入波動方程:方程右邊:方程左邊:程函方程(eikonalequation)2023/2/214故:根據(jù)實部和實部相等,虛部和虛部相等,有:程函方程(eikonalequation)2023/2/215實部虛部則:因為即:
描述勢函數(shù)在空間的變化率。如果不涉及到源和聚焦那一點,它的變化不是很大。所以:當l=cT較小而▽2j0不是很大時,有:程函方程(eikonalequation)2023/2/216或?qū)憺椋?/p>
描述一個面隨空間的變化率和波傳播速度的聯(lián)系。由梯度公式:故有:這就是程函方程、特性函數(shù)方程式或哈密頓方程式,又稱時間場方程。程函方程(eikonalequation)2023/2/217描述一個面在解析幾何上可以用面的法線。只要知道法線隨時間在空間的運動,完全可以表述面隨時間在空間變化。寫成向量形式:其中為沿波傳播方向的單位向量。程函方程(eikonalequation)2023/2/218程函方程具有重要的物理意義:如果介質(zhì)的參數(shù)c(x,y,z)已知,利用邊界條件或初始條件,就可求得時間場t(x,y,z)
,從而可知任意時刻波前在空間的位置,也就求得地震波傳播的全部情況,而用不著求波動方程的解。因此,它是幾何地震學(xué)中最基本的公式。但我們要記住,從波動地震學(xué)過渡到幾何地震學(xué)的兩個根本條件:(1)l較小,或趨于零,即只對高頻適用;(2)▽2j0不是很大,即不能趨于無限。意味著不是源也不是聚焦點。程函方程(eikonalequation)2023/2/219程函方程及射線方程僅在高頻條件下近似成立,因此我們應(yīng)該記住,地震學(xué)中的射線理論只是高頻近似理論,今后的學(xué)習(xí)或研究中可能會遇到應(yīng)用射線理論所推導(dǎo)的結(jié)論與實際觀測不符的情況,一個很大的可能性是遇到的具體問題不滿足高頻近似條件。那么一個新的問題是,什么樣的問題滿足高頻近似,可以用射線理論呢?這與應(yīng)用的地震資料的頻率范圍有關(guān),也與具體問題對解的精度要求有關(guān)。一般認為,當應(yīng)用的地震波資料的最大波長較需要考慮的介質(zhì)空間不均勻尺度小1個數(shù)量級,可以用高頻近似。程函方程(eikonalequation)返回2023/2/220矢量形式程函方程為:其中為沿波傳播方向的單位向量。按上式計算沿任意方向的線積分,如從A點到B的傳播時間:3.1.2費馬原理(Fermat’sprinciple)這表明沿梯度的方向射線傳播的時間總是最小的。2023/2/221費馬原理:射線在任意介質(zhì)中從一點傳播到另一點時,沿所需時間最短的路徑傳播。費馬原理是從射線角度描述波傳播特點的。它指出,地震波沿射線傳播的時間和沿其它任何路徑傳播的時間比較為最小,或者說波沿所花時間為最小的路徑傳播。根據(jù)這個原理可以確定地震波在已知傳播速度的介質(zhì)中的射線形狀,在非均勻介質(zhì)中,射線路徑不再是直線,而是與波前面垂直的曲線。費馬原理(Fermat’sprinciple)2023/2/222費馬原理(Fermat’sprinciple)2023/2/223費馬原理(Fermat’sprinciple)如圖,設(shè)t為擾動從A點沿著一條路徑傳播到A’所用的時間,擾動的傳播速度v(x1,x2,x3),該路徑的弧長為l。利用物理上的變分法理解費馬原理由費馬原理可表示為:設(shè)射線參數(shù)方程:2023/2/224費馬原理(Fermat’sprinciple)如果用
表示
,則射線的弧長可以表示為:則走時表示為:其中,和分別是A和A’點的相應(yīng)的值。2023/2/225費馬原理要求積分沿射線走時必須是穩(wěn)定值費馬原理(Fermat’sprinciple)即沿相鄰路徑
必須走時相同,即t的變分dt為零:泛函的變分與函數(shù)的微分有相似的概念,不同的是函數(shù)的微分dy僅是兩點之間函數(shù)值的差別;而泛函的變分dy是兩個函數(shù)之間的差別。由費馬原理可知,對于均勻介質(zhì),射線為直線,沿射線的走時取極小。故費馬原理又稱為最小時間原理。2023/2/226總的走時為:xd-xbaABO對于均勻介質(zhì),沿射線的走時取極小,射線為直線。利用費馬原理推導(dǎo)平界面的Snelllaw?費馬原理(Fermat’sprinciple)2023/2/227xd-xbaABO2023/2/228若t(x)取極值,即:費馬原理(Fermat’sprinciple)即:費馬原理意味著Snell’slaw。xd-xbaABO2023/2/229像光的傳播一樣,用射線理論求解地震波的傳播問題,使問題分析簡化。缺點:射線理論中波隨時間傳播,對振動幅度的描述沒有了。隨研究的深入,有很多改進的方法。在射線理論上加上振動幅度,變成一部分用射線,一部分用來描述波的強度等,兩者柔和在一起,為增加信息量而發(fā)展起來的方法。我們只討論基本的方法。
程函方程和費馬原理2023/2/230射線追蹤法簡介射線追蹤是指給定發(fā)射點和接收點位置及介質(zhì)的波速,求從發(fā)射點到接收點的射線軌跡及其走時。射線追蹤方法作為一種快速有效的波場近似計算方法,對于地震波理論研究具有重要意義?;驹恚篠nell的折射理論、Fermat理論和Huygens原理。射線法的主要優(yōu)點是概念明確,顯示直觀,運算方便,適應(yīng)性強,其缺陷是應(yīng)用有一定限制條件,計算結(jié)果在一定程度上是近似的,對于復(fù)雜構(gòu)造進行兩點三維射線追蹤往往比較麻煩。程函方程和費馬原理2023/2/231現(xiàn)行的方法可分為以逐點外推為基礎(chǔ)的局部射線追蹤法理論,和以整體分析、驗算為出發(fā)點的全局射線追蹤法局部射線追蹤法是指由已知點推斷出未知點,逐點分析得出路徑。理論基礎(chǔ)是最短原理,對所有可能出現(xiàn)的路徑進行分析對比得出最短者。代表性的方法包括解析法和波前法。解析法是運用有限差分理論和程函方程,通過已知的三個點來外推第四個點,依次迭代就可以得到路徑。波前法是運用Huygens理論,逐點計算距離選擇最短者,推測路徑。射線追蹤法簡介程函方程和費馬原理2023/2/232全局射線追蹤法是指綜合運用Snell理論、Fermat理論和Huygens理論,在假設(shè)了一條標準射線前提下,對已知曲線進行整體分析,并修正得出路徑和走時。四方網(wǎng)格打靶法是假設(shè)一個角度,運用Snell理論做出一條射線。但可能無法到達目標接收點,不斷改變初始角度和介質(zhì)速度進行試算,直到達到目標點,此即為所要射線。彎曲法是運用波在介質(zhì)中的曲線傳播,經(jīng)過整體的計算和邊值的運用,解方程得出路徑。射線追蹤法簡介程函方程和費馬原理2023/2/233逐步迭代射線追蹤法在假設(shè)一條標準射線的前提下,運用Snell理論、Fermat理論進行不斷修正,得到走時和路徑。如圖所示,首先求出連接S和R之間的直線與每一層的交點,注意在整條射線路徑上,任意連續(xù)三點間均滿足折射定律。這樣,固定周邊的兩點,推算出中間點。這樣不斷修正就可以得到最終的路徑。根據(jù)fermat原理,波沿射線傳播的時間最短,求出圖中假設(shè)的P和實際的P的偏移量,反復(fù)迭代就可以求出路徑。射線追蹤法簡介返回2023/2/2343.2射線方程(Rayequation)物理上的變分法一般讓泛函的自變量(函數(shù))有小的變動,但兩個端點不動,然后要求泛函的變分為零,從而求得運動方程。我們用同樣的方法求射線方程。式中的變分符號和積分符號互換,得:式中
可以寫成:(微分和變分互換)(1)2023/2/235所以(1)式第二項為:射線方程(Rayequation)分部積分,得:因為兩端點是固定的,所以:(2)將(2)代入(1),得:2023/2/236射線方程(Rayequation)上式對任意的
均成立,所以:這就是射線所滿足的方程,叫做歐拉方程。返回2023/2/237把平界面上的研究結(jié)果推廣到球?qū)ΨQ的地球模型上,這時的snell定律有什么樣的變化?如圖所示的同心球?qū)咏M成的球?qū)ΨQ介質(zhì)中,射線與兩個界面的交點分別為A1,A2,在速度v1的球?qū)又?,射線為A0A1,在速度v2的球?qū)又?,射線為A1A2。根據(jù)斯內(nèi)爾折射定律,有:分層球?qū)ΨQ地球模型中的射線路徑
3.3.1球?qū)ΨQ介質(zhì)中的Snelllaw3.3球?qū)ΨQ介質(zhì)中的地震射線2023/2/238在DOA1A2中,由正弦定理:由以上兩式得:想象,令層無限增加,層的厚度無限減小,就過渡到速度連續(xù)變化的情形,射線由折線變成一條光滑的曲線。在射線上的任一點都有:Snelllaw2023/2/239(常數(shù))這就是球?qū)ΨQ介質(zhì)的射線方程,也稱為球?qū)ΨQ介質(zhì)中的折射定律(Snell’slaw)。式中,r0為地球半徑,i0,v0分別為地表處入射角和波速,ii是射線與法線(半徑)的夾角,p叫射線參數(shù),沿射線為常數(shù)。若令:則射線參數(shù)p表示為:當半徑和地面上的速度給定后,射線參數(shù)只與射線對地面的入射角有關(guān)。不同的p值對應(yīng)不同的入射角,或者說,對應(yīng)不同形狀的射線。
snell定律使射線是彎曲的。
Snelllaw2023/2/240速度只隨深度變化情形下的射線軌跡。Snelllaw2023/2/241Snelllaw返回2023/2/2423.3.2本多夫定律(Benndorf’srelation)球?qū)ΨQ模型中要研究地震射線用的仍然是snell定律,可以用參數(shù)p描述一條射線。實際工作中我們能得到的是什么?地震圖!由地震圖得走時曲線!能否通過得到的走時曲線推斷某一臺站記錄到的某一地震射線的射線參數(shù)p?。本多夫定律做的是通過實測數(shù)據(jù)得到某一個臺站記錄到的某一個震相對應(yīng)地震射線的射線參數(shù)p。2023/2/243實際上用的是高等數(shù)學(xué)中的微元分析的方法。選兩個相鄰(靠的足夠近)的射線,分析:波陣面AC垂直于EA和EB,實際上是不可能的,但在微元分析法中是可以的。C到B的傳播需要時間,從地表看相當于從A到B傳播。自震源E發(fā)出的任意兩條相鄰射線EA和EB,AC為它們的波陣面,DABC可視為直角三角形。EABCO本多夫定律(Benndorf’srelation)2023/2/244兩條射線的長度相差為由走時曲線的斜率可求出地震射線的射線參數(shù),射線參數(shù)與走時曲線的這個關(guān)系就是本多夫定律.波沿傳播時間,則:由上式知:另外,地表視速度為:EABCO表示地震波的真速度與視速度之間的關(guān)系本多夫定律(Benndorf’srelation)2023/2/245只要知道對應(yīng)某個震相的走時曲線,在走時曲線對應(yīng)的震中距上,即對應(yīng)某個臺站上,求走時曲線的斜率,得到射線參數(shù)p。意義:本多夫定律表示相鄰射線之間的關(guān)系,把實測數(shù)據(jù)和抽象的射線參數(shù)聯(lián)系起來了。不同的臺站得到不同的斜率,不同的p,從而把射線區(qū)分開。本多夫定律(Benndorf’srelation)返回2023/2/2463.3.3走時曲線(traveltimecurve)問題:不同的射線有不同的射線參數(shù)p,同一射線的射線參數(shù)是一樣的。但射線經(jīng)過球內(nèi)界面,有反射和折射,滿足snell定律,這種情況下沒辦法單靠射線參數(shù)區(qū)分哪個是反射射線哪個是折射射線。如何來區(qū)分反射和折射射線?震中距和走時之間的關(guān)系把它們區(qū)別開。研究地球內(nèi)部的速度結(jié)構(gòu),基本的方法之一:構(gòu)造一個模型,利用波射線理論,計算理論的走時曲線;實際的走時曲線可由地表觀測得到,然后理論走時曲線與實際觀測走時曲線進行對比,正演的方法解決反演的問題。對球?qū)ΨQ的問題,如何建立走時曲線的理論公式?2023/2/247速度隨深度變化的橫向均勻地球模型(IASPEI91)中的射線傳播則有式中其中l(wèi)是射線傳播的路徑走時曲線2023/2/248這里正負對應(yīng)頂點的兩邊,于是有由及射線方程則得這就是以p為參數(shù)的時距方程組r1R走時曲線2023/2/249若源在表面,射線對稱,則:若源有一定深度h,則積分為:走時曲線2023/2/250由時距方程組還可進一步推導(dǎo)即定義這是球?qū)ΨQ介質(zhì)中的t(p)表達式。走時曲線方程或時距方程。走時曲線返回2023/2/2513.3.4射線的曲率怎么描述射線的形狀?射線曲率?。?)頂點從震源E發(fā)出的射線到達S點,據(jù)球?qū)ΨQ介質(zhì)中的射線定律:時此時射線方程為:
則L點為射線的頂點(最低或最高點)LMrLRe0i0ES2023/2/252(2)射線的曲率設(shè)FJ是一條從震源F到地表J點地震射線,L是射線的最低點。
射線上p點的坐標:p(r,q)。PM是過射線點P的切線。PN過射線點P的法線。M和N分別是交點。射線的曲率2023/2/253s為弧長PL;r為曲率半徑。射線的曲率為:由圖知則:即射線的曲率變?yōu)椋鹤罱K要討論曲率隨速度、深度或隨半徑的變化即r和描述的射線參數(shù)如i,p,v等的關(guān)系。射線的曲率2023/2/254代入射線曲率方程,得:射線的曲率2023/2/255對snell定律進行微分處理:給定的射線,r,i,v的組合不變,射線的曲率得到:代入射線曲率方程,得:2023/2/256這就是射線曲率方程。式中v=v(r)為波的傳播速度,dv/dr為速度的變化率。dv/dr愈大,曲率半徑r愈小,射線愈彎曲。p決定了研究的是哪一條射線,速度的變化率決定這條地震射線在地球內(nèi)部的形狀。知道了速度隨深度的變化,就可以了解不同的射線在地球內(nèi)部是怎么傳播的,它決定了射線傳播的形狀問題。射線的曲率②若速度隨深度的增加而增加即,或者說速度隨r的減小而增加即,則,射線凸向球心并有最低點。2023/2/257討論:
常數(shù),則射線是一條直線射線的曲率2023/2/258③若速度隨深度的增加而減小,或,則,射線凸向地表。這時有三種情況:
第一種情:此時即射線有最高點.
射線的曲率2023/2/259此時,
此時射線方程為這是什么樣的地震射線?或第二種情況:
射線的曲率即2023/2/260當射線的入射角整理得:射線的曲率其中常數(shù)積分得:這里b為積分常數(shù)。2023/2/261其中r0是地球半徑,這是螺旋線方程。結(jié)果表明,在這種情況下,地震射線成螺旋線卷入地心。
當射線的入射角即射線沿地表掠射時,射線為圓周線射線的曲率于是得:2023/2/262第三種情況:
此時曲率半徑總是小于情況下的曲率半徑,則射線更快地卷入地心。速度的分布影響射線傳播的形態(tài)。這實際上就是snell定律。射線的曲率返回2023/2/263以上討論了速度分布影響了射線的形狀,并推出了理論的走時曲線方程。我們想解決的問題是什么?通過地表得到的信息,推斷地下的結(jié)構(gòu)。我們能得到的信息是什么?時距曲線。方法是從地表得到實測的走時曲線;通過假定地下的結(jié)構(gòu),根據(jù)snell定律和時距方程得到理論的走時曲線;理論與實測走時曲線對比。正演的方法解決反演的問題。速度分布對射線形狀有影響,最終表現(xiàn)為對走時曲線有影響。利用不等式繼續(xù)作進一步的討論:3.3.5地球內(nèi)部速度變化對射線形狀和走時曲線的影響2023/2/264(1)速度連續(xù)變化的情況
速度隨深度的增加而增加,射線族向上彎曲而出射到地面;
速度為常數(shù),射線為直線;符合不等式時,射線曲率小于地表曲率,能出射到地面,不符合不等式時,射線螺旋形地彎向地心。實際上,地球內(nèi)部的地震波速度總體上是隨深度增加而增加的。但地球內(nèi)部還存在一些速度異常層及間斷面,它們對射線的幾何形狀及走時曲線都有影響。地球內(nèi)部速度變化對射線形狀和走時曲線的影響
速度隨深度而減小時,射線彎向球心。2023/2/265(2)高速層與高速界面a.高速厚層(跳躍大)若在地球內(nèi)部r1至r2的范圍內(nèi),速度隨深度的增加比這個范圍上下的介質(zhì)中的速度都快,即速度的變化率的值相對地大,此層稱為高速層。即:①高速層②高速度間斷面地球內(nèi)部速度變化對射線形狀和走時曲線的影響2023/2/266(c)高速層射線特征:通過高速層的射線彎曲得厲害(曲率比較大),在地球內(nèi)部出現(xiàn)射線交叉現(xiàn)象,穿透較深的射線反而在穿透較淺的射線之間出射,相應(yīng)的走時曲線出現(xiàn)回折(圓環(huán))現(xiàn)象。EB與高速層的頂面相切,E-B走時順進;EC與高速層的底面相切,B-C走時逆進,隨入射角減小,震中距反而縮小,即穿透較深的射線反在近距離處出射,相應(yīng)走時曲線出現(xiàn)回折現(xiàn)象;ED一部分射線進入r<r2的介質(zhì),C-D又走時順進。地球內(nèi)部速度變化對射線形狀和走時曲線的影響高速層2023/2/267b.高速層層薄且速度的梯度跳躍不大A點相應(yīng)于與高速層上界面相切的射線之出射點;進入高速薄層的射線曲率比FA射線的曲率大,曲率半徑小,射線回折,在點附近輻射強度高,這就是地震的“聚焦”現(xiàn)象。走時曲線在A點出現(xiàn)角點(拐點)。A點之后的曲線的斜率小意味著速度快。走時曲線出現(xiàn)角點說明下面存在高速的區(qū)域。高速層因為速度連續(xù),無反射震相和首波,只有直達波和折射波。厚層和薄層沒有本質(zhì)的區(qū)別。地球內(nèi)部速度變化對射線形狀和走時曲線的影響高速層2023/2/268①高速層②高速度間斷面
當r1=r2
,且,此界面稱為高速界面或高速度間斷面。速度不連續(xù)的界面,存在反射震相,存在首波。高速間斷面上因為速度不連續(xù),出現(xiàn)直達波、反射波、首波和折射波。走時曲線出現(xiàn)“打結(jié)”,“分叉”,若觀測到的走時曲線有這類現(xiàn)象,則應(yīng)判斷出高速層的存在。地球內(nèi)部速度變化對射線形狀和走時曲線的影響高速界面2023/2/269總結(jié):若觀測到的走時曲線出現(xiàn)“打結(jié)”,“分叉”這類現(xiàn)象,則應(yīng)判斷出高速層的存在。莫霍面是一個高速間斷面,界面上的P波速度為6.3km/s,界面下的速度為8.2km/s。當波射線遇到該界面時,會出現(xiàn)曲率加大的現(xiàn)象,使走時曲線出現(xiàn)回折。古登堡面是地幔和地核間斷面,外核是液態(tài),不能傳播橫波,在地幔的SV波傳到外核變成P波,外核的P波速度比地幔的SV波速度快,這時相當于高速間斷面。地球內(nèi)部速度變化對射線形狀和走時曲線的影響高速層高速度間斷面2023/2/270(3)低速層與低速界面若在地球內(nèi)部r1至r2的范圍內(nèi),速度隨深度的增加而減小,而在此范圍之外速度隨深度增加而增加。那么,在r1至r2的層稱為低速層,即:①低速層②低速界面地球內(nèi)部速度變化對射線形狀和走時曲線的影響2023/2/271由于波速隨深度而增加,及球體介質(zhì)的曲率,遠震波射線路徑總體上是彎曲的、凹向地面。但當射線穿過地球內(nèi)部的低速層時,低速層內(nèi)的射線段會反向偏轉(zhuǎn),出現(xiàn)上凸。地球內(nèi)部速度變化對射線形狀和走時曲線的影響低速層2023/2/272在低速層中,射線不滿足不等式。經(jīng)低速層的射線不會向上彎曲而是彎向地心,但穿過低速層后,由于地層中的速度又隨深度增加而增加,射線又能向上彎曲,最終出射到地面。B點的震中距可以大于180度。然后隨入射角的減小,折射線變的越來越平坦,彎曲的不劇烈。射線出現(xiàn)影區(qū)或盲區(qū),相應(yīng)的走時曲線出現(xiàn)間斷。地球內(nèi)部速度變化對射線形狀和走時曲線的影響低速層2023/2/273①低速層②低速界面
當r1=r2
,且,此界面稱為低速界面或低速度間斷面。低速界面速度不連續(xù)有反射波,有直達波,有折射波。C-D走時逆進,D-E走時順進。古登堡面-核幔界面是一個低速間斷面,界面上的P波速度為13.6km/s,界面下的速度為8.0km/s,當波射線遇到該界面時,形成P波的影區(qū)。(b)地球內(nèi)部速度變化對射線形狀和走時曲線的影響低速界面2023/2/274低速層:射線出現(xiàn)影區(qū)或盲區(qū),相應(yīng)的走時曲線出現(xiàn)間斷。高速層:走時曲線出現(xiàn)“打結(jié)”,“分叉”這類現(xiàn)象地球內(nèi)部速度變化對射線形狀和走時曲線的影響高速層低速層三次往返2023/2/275不同的典型速度結(jié)構(gòu)模型及相應(yīng)的射線軌跡、走時曲線、X-p曲線和t-p曲線。地球內(nèi)部速度變化對射線形狀和走時曲線的影響2023/2/276總結(jié):以上是速度分布與射線之間的關(guān)系,射線的形狀最終決定走時曲線有不同的表現(xiàn)。高速層和高速界面都會出現(xiàn)走時曲線斜率的變化。低速層和低速界面都會出現(xiàn)走時間斷,地表上表現(xiàn)為有影區(qū)。這可以幫助對地球有定性的了解。地球內(nèi)部速度變化對射線形狀和走時曲線的影響返回2023/2/2773.4水平分層介質(zhì)中的走時方程3.4.1射線走時方程在近震范圍內(nèi),可以忽略地球的曲率。已知介質(zhì)的速度隨深度增加而增加如圖所示,深度為x30震源所輻射的一條初始入射角為i0的射線,并設(shè)該射線所能穿透的地球最深的深度為z,求射線走時方程2023/2/278射線走時方程由斯內(nèi)爾定律:射線走時方程對地表震源,則有:2023/2/279+由802023/2/2式中稱為慢度,Z(p)是射線頂點的深度??蛇M一步推導(dǎo):稱為垂直慢度。射線走時方程時距方程2023/2/281射線走時方程一個更巧妙的函數(shù)是以下組合:這就是t(p)函數(shù),它是射線參數(shù)
的單值函數(shù),可簡化對走時曲線的分析。t(p)曲線的斜率為-X,因為,t(p)
曲線總是下降或單調(diào)下降,即使出現(xiàn)三次往返。返回2023/2/2823.4.2單層水平地殼模型中地震波走時曲線地球半徑6371km,在地表幾十公里,上百公里,可以把地球表面看成是平的。因為考慮的地震射線比較近,它涉及的深度有限,只能研究地球淺部的構(gòu)造。若要考慮深部的、全球的構(gòu)造,必須考慮波傳播的比較遠,那時必須考慮地球的曲率的影響。近震是限制,結(jié)果只能討論淺部的構(gòu)造,優(yōu)點是模型簡單,相對容易理解。地殼看做一個平行層,下面是一個半無限空間的模型。近震射線和走時理論2023/2/283地震發(fā)生后產(chǎn)生不同的地震波,如直達波、反射法等,這些在地震圖上顯示的性質(zhì)不同或傳播路徑不同的地震波稱為震相。近震射線和走時理論2023/2/2841.首波首波是波在界面上的入射角達到全反射時產(chǎn)生的地震波。它是近震的主要體波震相之一。為臨界角入射角等于臨界角時,折射波以速度v2沿界面AB行進。由于界面上的位移的連續(xù)性,根據(jù)惠更斯原理,此折射波所引起的界面質(zhì)點的振動,又可作為波源,此波源產(chǎn)生的波向?qū)觾?nèi)傳播。圖中GS便是此波源產(chǎn)生的某一條射線,EFGS射線所代表的波就是首波。近震射線和走時理論首波2023/2/285首波的特征:①首波的射線為折線(而非直線);②當入射角小于臨界角時不出現(xiàn)首波,即震中附近為首波盲區(qū);③首波的一段沿界面以速度v2行進,因而經(jīng)一定時間后,首波超前于直達波而先行到達地震臺。首波的形成惠更斯原理近震射線和走時理論首波特征2023/2/2862.近震地震波理論走時方程只有觀測結(jié)果是不夠的,我們要知道理論走時與距離的關(guān)系。推導(dǎo)單層地殼介質(zhì)的地震波走時理論。(1)直達波的走時方程這是直達波走時方程,走時曲線為雙曲線。近震射線和走時理論直達波2023/2/287T軸上的截距包含震源深度的信息。時時走時曲線是通過原點的直線,直達波走時曲線的漸近線,斜率為
直達P波比S波先到達地震臺;兩波的走時差隨震中距或震源深度的加大而變大
近震射線和走時理論直達波2023/2/288(2)反射波的走時方程c反射波的走時曲線為雙曲線。與直達波且具有相同的漸近線截距反射波走時曲線的漸近線,近震射線和走時理論反射波2023/2/289(3)首波的走時方程且走時方程近震射線和走時理論首波2023/2/290b走時曲線是直線,斜率為截距:時它是首波出現(xiàn)的最小距離首波不出現(xiàn)△0一般為幾十公里至一百公里左右近震射線和走時理論首波2023/2/291對于兩層地殼模型,首波P*的走時方程為單層模型中Pn的走時方程,兩層模型中Pn的走時方程:此走時曲線斜率為上述三類波的綜合走時曲線:近震射線和走時理論首波2023/2/292
三類波的綜合走時曲線近震射線和走時理論2023/2/293實際觀測中c界面上的首波Pb不如直達波Pg和moho界面上的首波Pn那么容易識別。主要原因(1)c界面不是全球性的,因此某些區(qū)域觀測不到c界面上的相關(guān)震相。(2)有些區(qū)域由于雖然存在c界面,但由于下地殼較薄,以至于c界面上的首波不能首先到達而被其他震相的波所覆蓋。這種情況下容易將實際存在兩層地殼結(jié)構(gòu)模型誤認為是單層地殼模型。2023/2/2943.走時曲線的應(yīng)用識別震相之后可以得到它的走時曲線,從而可以做更多的研究。時距關(guān)系——走時和距離的關(guān)系,有曲線的形式也有表格的形式。J-B走時表給出各種震相,有近震震相也有遠震震相,不同的震相在不同震中距的臺站上到達的時間,從幾秒到幾分鐘,甚至幾十分鐘。J-B根據(jù)球?qū)ΨQ基本模型做出的理論走時表。知道震源深度、震中距,我們可以查表得到對應(yīng)某震相的理論走時是多少。從而了解震相大體在什么位置,到那個位置前后識別震相。(1)走時曲線是識別震相的重要依據(jù)識別震相才能畫出走時曲線,反過來又幫助識別震相,反復(fù)探索。2023/2/295什么叫新震相?以前的結(jié)構(gòu)里得不到的震相,在地震圖上又發(fā)現(xiàn)有擾動出現(xiàn)在原來沒有震相的那個位置,就要找出現(xiàn)的可能原因。所謂發(fā)現(xiàn)新震相?實際上是通過對新震相的解釋,構(gòu)建一些模型,從而發(fā)現(xiàn)新的結(jié)構(gòu)。走時曲線的應(yīng)用在地震圖上發(fā)現(xiàn)新震相ScSp,比ScS早到幾秒,怎么解釋?必須有一個與標準地球不同的結(jié)構(gòu)。2023/2/296走時曲線的應(yīng)用分析認為可能是北美板塊向歐亞大陸板塊下插,是這個下插板塊的影響。引入這個板塊就能解釋這個問題。在該板塊上發(fā)生了偏振的變化即S-P波。2023/2/297(2)走時曲線是確定震源基本參數(shù)的重要工具。走時曲線是我們研究的基礎(chǔ),它是可以確定震源的基本參數(shù)。從地震記錄可以得到P和S波的到時差,可推得震中距;三臺的交點得震源的位置,多用于地震速報。走時曲線的應(yīng)用2023/2/298(3)走時曲線可以計算視速度和出射角(本多夫定律)。i0:到達地面的入射角,由于球?qū)ΨQ性,即是表面源的射線的離源角。走時曲線的應(yīng)用qt2023/2/299(4)研究地球構(gòu)造識別震相,制作走時曲線。由實測走時曲線反演地殼構(gòu)造。利用地震學(xué)的方法可以處理很多的問題。高速公路的檢測,飛機場跑道質(zhì)量檢測。原理:地震波遇到裂隙,遇到不連續(xù)面會發(fā)生反射,對反射信號進行處理可以得到下面澆注的水泥是否有裂隙或空洞。建筑物的樁基檢測。裝修房子墻上打洞,雖然用的是超聲波,但與地震波的處理方式類似。返回2023/2/21003.4.3多層地殼模型中的地震震相與走時曲線實際地殼結(jié)構(gòu)可能有多個分層。對多個水平分層介質(zhì),假設(shè)震源在地表。應(yīng)該有式中X是震中距。2023/2/2101經(jīng)常在實際中應(yīng)用的模型—兩層地殼模型
這種情形下,大于一定震中距的地震臺能記錄到P波和S波直達波震相、反射波震相、康拉德面上的首波和Moho面的首波。
這種情形在實際中很少見到。首波只存在于殼幔界面上,但這種情形下亦容易被誤認為是單層模型。返回2023/2/21023.5地震波能量在邊界上的分配當波傳播到自由面(地表面)或介質(zhì)內(nèi)部的速度間斷面時,由于地震波速的突然變化,波在界面上將發(fā)生反射或折射,還可能發(fā)生波的轉(zhuǎn)換?,F(xiàn)在討論地震波入射到界面后,產(chǎn)生的反射波和折射波的能量分配問題討論平面波在自由表面(半無限空間)的傳播特征,在數(shù)學(xué)上是求適合于邊界條件的波動方程的解,同時討論它的物理意義。這是了解地震觀測條件所必備基礎(chǔ)知識。波動場分為無旋場和無散場,無散場對應(yīng)的是S波,它是在一個面內(nèi)的偏振波。我們把面上的偏振分解到兩條線上去,形成兩條線的偏振。S波的位移分解為:§3.5.1平面波在自由表面的反射2023/2/2103波場總位移:2023/2/2104位移的平面問題自由表面的邊界條件及自然邊界條件反射系數(shù)及其物理意義由地動記錄推算入射波的特點偏振交換、Rayleigh面波和類全反射主要內(nèi)容返回2023/2/2105位移的平面問題分別討論垂直面(入射面)內(nèi)的位移及水平面內(nèi)的位移。(1)討論垂直平面內(nèi)的位移。x3x1PPSVx3x1PSVSV2023/2/2106P波位移:S波位移:則在入射面內(nèi)位移:即入射面內(nèi)彈性波場位移:位移的平面問題而其中的位函數(shù)和滿足的波動方程:2023/2/2107SH波可以和P、SV波分開單獨處理。SH的位移在水平面內(nèi),在水平面內(nèi)單獨討論SH波的位移v
。其滿足的波動方程為:(2)水平面內(nèi)的位移返回位移的平面問題2023/2/2108
另外,在無窮遠處,所求函數(shù)及v必須為零或具有限值。這種限制是很自然的,故稱為自然邊界條件。2.自由表面的邊界條件及自然邊界條件在自由表面上沒有任何約束,可以自由變形,正應(yīng)力與切應(yīng)力均為零,即在z=0的平面上有:返回2023/2/21093、反射系數(shù)及其物理意義定解問題,只求界面上的反射系數(shù),與初始條件無關(guān)。先討論P和SV波問題解法1:根據(jù)第二章已求得的波動方程的解,代入邊界條件求位移場。解法2:利用問題的物理性質(zhì),猜出其中若干未知量,使問題大大簡化,再由方程和邊條件定出其余未知量。(“半逆解法”)問題:若已知入射波的振幅、頻率、入射角和傳播速度;求滿足波動方程和邊界條件的總位移場。2023/2/2110對于P和SV波,設(shè)波動方程的解具有分離變量的形式,即:
,c為波的水平視速度,式中(1)給出定解形式將代入位函數(shù)滿足的波動方程,得:即:(2)解滿足波動方程實際問題轉(zhuǎn)化為考察是否有以上形式解。M,G可能是實數(shù)或虛數(shù),由c和的關(guān)系而定。反射系數(shù)及其物理意義解法22023/2/2111則:即入射波和反射波沿分界面視速度相等,這是Snell定律決定的反射系數(shù)及其物理意義解法2對于平面波,必須有
此時:
M,G均為純虛數(shù);則iP,iSV
為實數(shù)。2023/2/2112
分別為入射及反射P波振幅,分別是入射及反射SV波振幅。第一、二式第一項表示入射波,第二項表示反射波。
反射系數(shù)及其物理意義解法2用邊界條件求出這些振幅系數(shù),從而可確定波動方程的解
2023/2/2113代入自由表面邊界條件得:(3)邊界條件1)P波的入射到自由表面反射系數(shù)及其物理意義解法2這里2023/2/2114或:
反射系數(shù)是含有參數(shù)c的表達式,當給定一個c值,則反射系數(shù)就確定?;蛘哒f,若波以某一定的入射角iP入射,則反射系數(shù)就確定。位移反射系數(shù):這樣由反射系數(shù)求出反射波的振幅A2,B2,從而求得位函數(shù)及總位移場。反射系數(shù)及其物理意義2023/2/21152)當SV波入射到自由表面同理得:或:可看出,當法向入射,無反射P波,A2=0同樣,由反射系數(shù)求出反射波的振幅A2,B2,從而求得位函數(shù)及總位移場。反射系數(shù)及其物理意義2023/2/2116SH波入射只產(chǎn)生反射SH波。設(shè)波動方程的解為:它滿足自由表面邊界條件中的第三式,這表明SH波在自由表面的反射,其反射系數(shù)為1,或者說波反射SH波振幅等于入射SH波的振幅,且無相位變化。地表總位移為:即地表總位移是入射波的兩倍。
代入得:再討論SH波入射到自由表面情況以上是單色諧波的情況,非單色諧波利用付氏變換轉(zhuǎn)化為單色諧波的問題。
反射系數(shù)及其物理意義返回2023/2/21174.由地動記錄推算入射波的特點(1)問題
由波動方程的解,所得的位移場是入射波和反射波疊加的結(jié)果,波的疊加不會改變波的到時。疊加主要影響的是振動的幅度。討論地球內(nèi)部結(jié)構(gòu)時,一般用到時,疊加對到時是沒有影響的。地面上記錄到的地震波,近似可看成平面波向半空間的自由界面入射,因此,界面質(zhì)點的波動不是單純的入射波,而是(入射波+反射波)。了解其中關(guān)系,則可以從實際記錄推算入射波特征2023/2/2118(2)入射波傳播方向的推斷地面總位移矢量與地面之間的夾角稱為視出射角
。波的入射射線與地面的夾角稱為真出射角e。它與波的入射角互為余角。①視出射角和真出射角的概念②推算公式取P波入射到自由表面的情形。地動記錄推算入射波的特點2023/2/2119Snell定律:所以上式也可寫成:視出射角和真出射角的關(guān)系式視出射角是可測的,這樣由地動記錄推算出入射波的特點。地動記錄推算入射波的特點2023/2/2120(3)入射波振幅的推斷:(即位移矢量模之間的關(guān)系)P波入射:地動記錄推算入射波的特點返回2023/2/21215.偏振交換、Rayleigh
面波和類全反射(1)問題由前己導(dǎo)出反射系數(shù)公式:可見,若分子為零,則RPP=RSS=0。此時的物理情況是:P波入射只產(chǎn)生反射SV波;SV波入射只產(chǎn)生反射P波?;蛘哒f,此時半空間只存在一個簡諧平面縱波,和一個簡諧平面橫波。而一般反射問題在半空間中至少存在三個簡諧平面波(純SH波入射,僅反射SH波)。2023/2/2122偏振交換方程:(2)求解為方便求解,作變換,令:對于已知介質(zhì)中的,總可以求出則iP和iSV的數(shù)值解。A-1又稱為射線參數(shù),在平面波情況下,它是整個射線系的參數(shù)。重要的是入、反射波系(折射)有共同的水平方向視速度A。這樣,利用三角公式將偏振交換方程化為:偏振交換2023/2/2123解三次方程,得三個根:C1,C2和C3
(3)討論:為討論方便、直觀,假定:B=1/3,即泊松體,l=m。因此:解之得:
ip和isv可能是為實數(shù),也可能是復(fù)數(shù),這與C有關(guān).偏振交換2023/2/2124當C=C2=3.1547時,當C=C1=4時,①偏振交換
②瑞利面波
當C=C3=0.8453時,入射角及反射角都是復(fù)數(shù)。復(fù)數(shù)角度意味著什么?
偏振交換、Rayleigh
面波2023/2/2125iSiS③類全反射:1<C<3(注意,不是偏振交換方程的根?。┙嵌让枋霾▊鞑サ姆较?。除了角度,一般還可以用波矢量!k是復(fù)數(shù)時就出現(xiàn)不均勻平面波。那么復(fù)數(shù)的角度意味著波傳播的波矢量出現(xiàn)復(fù)數(shù)!有了不均勻平面波也就出現(xiàn)了面波。瑞利面波是不均勻平面縱、橫波疊加成半無限空間中的彈性波動場。類全反射2023/2/2126其中|Rss|=1,即入、反射波強度相同;相位相差,稱為類全反射。SV波入射,產(chǎn)生類全反射的臨界角(對于泊松體)約為35.2。入射SV波的反射系數(shù):iSiS類全反射2023/2/2127什么條件下會出現(xiàn)不均勻平面波呢?類全反射返回2023/2/21281.SH波入射的情況2.P,SV波入射的情況§3.5.2平面波在平面上的反射和折射地球內(nèi)部的化學(xué)成分、力學(xué)特性是不均勻的,因此形成許多界面?,F(xiàn)在討論在以平面界面相接觸的兩個半無限彈性介質(zhì)中波的傳播。在數(shù)學(xué)上是求適合于邊界條件的波動方程的解。注意仍然是只求系數(shù),與初始條件無關(guān)。半逆解!以P波、SV波和SH波入射,入射面內(nèi)波場SH波最簡單,P波較簡單,SV波入射波場最復(fù)雜。主要討論簡單的SH平面波在兩種介質(zhì)分界面上的反射和折射問題。返回2023/2/21291.SH波入射的情況平面波在平面上的反射和折射(1)設(shè)入射平面SH波的位移求SH波入射平面上的總位移場?入射波位移為:反射波位移為:折射波位移為:2023/2/2130SH波入射的情況平面波在平面上的反射和折射(2)邊界條件在界面上位移連續(xù)和應(yīng)力連續(xù)即(3)反射和折射系數(shù)將位移函數(shù)代入邊界條件,得:式中,,p射線參數(shù)。2023/2/2131SH波入射的情況平面波在平面上的反射和折射令
R、T分別稱為位移反射系數(shù)和透射系數(shù),則:可以看出:T=R+1
。式中,,p射線參數(shù)。2023/2/2132SH波入射的情況平面波在平面上的反射和折射考慮如下三種情況:<1>當入射角i1=0時,垂直入射時,則i2=0,可推出:反射波和折射波的相對強度由界面兩側(cè)的介質(zhì)密度與剪切波速度乘積的相對大小決定,這個乘積稱為波傳播介質(zhì)的剪切波阻抗。如果兩邊介質(zhì)波阻抗相等,能量全部透射,無反射波。如果下層波阻抗為0,下層將無波動存在,SH波能量全部反射。.2023/2/2133SH波入射的情況平面波在平面上的反射和折射<2>臨界入射則這表明反射波與入射波相比,振幅不變,而折射波振幅是入射波振幅的2倍,無論是反射波和折射波都沒有相位變化<3>超臨界入射則
因為得:即:故為復(fù)數(shù)。2023/2/2134SH波入射的情況平面波在平面上的反射和折射則:這里,,超臨界入射的反射波,發(fā)生了相移,相位超前了2ε。且而折射波系數(shù):式中所以2023/2/2135SH波入射的情況平面波在平面上的反射和折射式中,波沿x1方向傳播的波數(shù)。這說明超臨界入射,折射波的振幅和相位都發(fā)生變化,變成了不均勻平面波,沿界面?zhèn)鞑?,振幅隨深度指數(shù)衰減。返回由折射波位移為:2023/2/2136平面波在平面上的反射和折射2.P、SV波入射的情況i1j1i2j2x1入射P波反射P波折射P波反射S波折射S波(1)入射面內(nèi)的位函數(shù)求P波入射平面上的總位移場?2023/2/2137平面波在平面上的反射和折射2.P、SV波入射的情況i1j1i2j2x1則上層介質(zhì)的位移表達式為下層介質(zhì)的位移表達式為2023/2/2138平面波在平面上的反射和折射P波入射的情況(2)邊界條件邊界面上位移連續(xù):即:,法向應(yīng)力連續(xù)條件即即切向應(yīng)力連續(xù)條件i1j1i2j2x12023/2/2139(3)反射和折射系數(shù)平面波在平面上的反射和折射P波入射的情況當P波入射時,共有5個系數(shù),4個振幅系數(shù)都可以由入射P波的振幅表示。同理可以推知SV波入射的情況。2023/2/2140界面上正應(yīng)力和法向位移連續(xù),剪應(yīng)力為0一般固體與固體邊界條件:什么情況下會出現(xiàn)超臨界入射出現(xiàn)面波?什么情況下不會出現(xiàn)超臨界入射,不會出現(xiàn)不均勻的平面波?關(guān)鍵是從低速介質(zhì)向高速介質(zhì)入射。應(yīng)力連續(xù),位移連續(xù)
一般固體與液體邊界條件:平面波在平面上的反射和折射2023/2/2141散射矩陣法。P-SV波入射問題所有可能的反、折射系數(shù)可以排成矩陣形式,稱為散射矩陣。矩陣是由代數(shù)來的,線性代數(shù)就是解方程組,矩陣就是那些方程組的系數(shù)。因為界面多了,出現(xiàn)的波多了,關(guān)于這些方程的個數(shù)也就多了,構(gòu)成了很多個方程的方程組,把這些方程組的系數(shù)抽出來構(gòu)成矩陣就形成了所謂的散射矩陣。返回2023/2/2142
麥克斯韋(Maxwell)體(彈滯性體)復(fù)習(xí)1這表明滯性是麥克斯韋體的主要特征。2023/2/2143復(fù)習(xí)1開爾芬-沃以特(Kelvin-Voigt)體彈性是開爾芬-沃以特體的主要性質(zhì)。2023/2/2144復(fù)習(xí)1若地震波的一個周期內(nèi)的總能量為E,△E為一個周期的耗能,則定義介質(zhì)的品質(zhì)因子Q:Q值越高的波衰減越小,對于P,S波和面波,可以通過測定衰減系數(shù),從而確定其相應(yīng)的Q值。但用不同的波測量的值常常是不同的。地殼淺部的Q值因地區(qū)而異
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 度施工合同范例
- 個人股分配合同范例
- 廣告設(shè)計宣傳發(fā)布合同范例
- 工程保護合同模板
- 出資協(xié)議合同范例
- 助劑買賣合同模板
- 在家工作租房合同范例
- 延期付款賒銷合同模板
- 2024石材工藝品供貨合同
- 2024裝飾項目合作合同
- 2024-2030年國內(nèi)水產(chǎn)飼料行業(yè)市場發(fā)展分析及競爭格局與發(fā)展策略研究報告
- 滬科版七年級上冊數(shù)學(xué)期中考試試卷附答案
- 2023年中國鐵路國際有限公司招聘筆試真題
- 《護理管理學(xué)》期末考試復(fù)習(xí)題庫(含答案)
- 學(xué)習(xí)通尊重學(xué)術(shù)道德遵守學(xué)術(shù)規(guī)范課后習(xí)題答案
- 樁基檢測規(guī)范
- 專項素養(yǎng)綜合全練(八) 跨學(xué)科專題教學(xué)設(shè)計2024-2025學(xué)年北師大版物理八年級上冊
- 和客戶簽回款協(xié)議書范本
- 2024年大學(xué)生村官考試題及參考答案
- 混凝土結(jié)構(gòu)課程課程設(shè)計
- 物業(yè)管理有限公司章程
評論
0/150
提交評論