版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年中考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.若數(shù)a,b在數(shù)軸上的位置如圖示,則()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.a(chǎn)﹣b>0 D.﹣a﹣b>02.如圖,△ABC內(nèi)接于⊙O,BC為直徑,AB=8,AC=6,D是弧AB的中點(diǎn),CD與AB的交點(diǎn)為E,則CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:23.如圖,直角坐標(biāo)平面內(nèi)有一點(diǎn),那么與軸正半軸的夾角的余切值為()A.2 B. C. D.4.下表是某校合唱團(tuán)成員的年齡分布.年齡/歲13141516頻數(shù)515x對(duì)于不同的x,下列關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是()A.眾數(shù)、中位數(shù) B.平均數(shù)、中位數(shù) C.平均數(shù)、方差 D.中位數(shù)、方差5.四組數(shù)中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互為倒數(shù)的是()A.①② B.①③ C.①④ D.①③④6.如圖,△ABC在邊長(zhǎng)為1個(gè)單位的方格紙中,它的頂點(diǎn)在小正方形的頂點(diǎn)位置.如果△ABC的面積為10,且sinA=,那么點(diǎn)C的位置可以在()A.點(diǎn)C1處 B.點(diǎn)C2處 C.點(diǎn)C3處 D.點(diǎn)C4處7.下列計(jì)算正確的是()A.a(chǎn)2+a2=a4 B.a(chǎn)5?a2=a7 C.(a2)3=a5 D.2a2﹣a2=28.一、單選題在某校“我的中國(guó)夢(mèng)”演講比賽中,有7名學(xué)生參加了決賽,他們決賽的最終成績(jī)各不相同.其中的一名學(xué)生想要知道自己能否進(jìn)入前3名,不僅要了解自己的成績(jī),還要了解這7名學(xué)生成績(jī)的()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差9.將拋物線y=A.y=-12C.y=-1210.若數(shù)a使關(guān)于x的不等式組有解且所有解都是2x+6>0的解,且使關(guān)于y的分式方程+3=有整數(shù)解,則滿足條件的所有整數(shù)a的個(gè)數(shù)是()A.5 B.4 C.3 D.211.長(zhǎng)春市奧林匹克公園即將于2018年年底建成,它的總投資額約為2500000000元,2500000000這個(gè)數(shù)用科學(xué)記數(shù)法表示為()A.0.25×1010B.2.5×1010C.2.5×109D.25×10812.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質(zhì),對(duì)人體健康和大氣環(huán)境質(zhì)量有很大危害.2.5μm用科學(xué)記數(shù)法可表示為()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知關(guān)于x的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,則a的值是______.14.圓錐的底面半徑是4cm,母線長(zhǎng)是5cm,則圓錐的側(cè)面積等于_____cm1.15.若代數(shù)式的值不小于代數(shù)式的值,則x的取值范圍是_____.16.計(jì)算(-2)×3+(-3)=_______________.17.如圖,身高1.6米的小麗在陽(yáng)光下的影長(zhǎng)為2米,在同一時(shí)刻,一棵大樹(shù)的影長(zhǎng)為8米,則這棵樹(shù)的高度為_(kāi)____米.18.已知,如圖,正方形ABCD的邊長(zhǎng)是8,M在DC上,且DM=2,N是AC邊上的一動(dòng)點(diǎn),則DN+MN的最小值是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B坐標(biāo)為(4,6),點(diǎn)P為線段OA上一動(dòng)點(diǎn)(與點(diǎn)O、A不重合),連接CP,過(guò)點(diǎn)P作PE⊥CP交AB于點(diǎn)D,且PE=PC,過(guò)點(diǎn)P作PF⊥OP且PF=PO(點(diǎn)F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.(1)直接寫(xiě)出點(diǎn)E的坐標(biāo)(用含t的代數(shù)式表示):;(2)四邊形BFDE的面積記為S,當(dāng)t為何值時(shí),S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說(shuō)明理由.20.(6分)某校為了解本校學(xué)生每周參加課外輔導(dǎo)班的情況,隨機(jī)調(diào)査了部分學(xué)生一周內(nèi)參加課外輔導(dǎo)班的學(xué)科數(shù),并將調(diào)查結(jié)果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計(jì)圖(其中A:0個(gè)學(xué)科,B:1個(gè)學(xué)科,C:2個(gè)學(xué)科,D:3個(gè)學(xué)科,E:4個(gè)學(xué)科或以上),請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:請(qǐng)將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導(dǎo)班的學(xué)科數(shù)的眾數(shù)是個(gè)學(xué)科;若該校共有2000名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計(jì)該校全體學(xué)生一周內(nèi)參加課外輔導(dǎo)班在3個(gè)學(xué)科(含3個(gè)學(xué)科)以上的學(xué)生共有人.21.(6分)當(dāng)x取哪些整數(shù)值時(shí),不等式與4﹣7x<﹣3都成立?22.(8分)某超市在春節(jié)期間開(kāi)展優(yōu)惠活動(dòng),凡購(gòu)物者可以通過(guò)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的方式享受折扣和優(yōu)惠,在每個(gè)轉(zhuǎn)盤(pán)中指針指向每個(gè)區(qū)域的可能性均相同,若指針指向分界線,則重新轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),區(qū)域?qū)?yīng)的優(yōu)惠方式如下,A1,A2,A3區(qū)域分別對(duì)應(yīng)9折8折和7折優(yōu)惠,B1,B2,B3,B4區(qū)域?qū)?yīng)不優(yōu)惠?本次活動(dòng)共有兩種方式.方式一:轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)甲,指針指向折扣區(qū)域時(shí),所購(gòu)物品享受對(duì)應(yīng)的折扣優(yōu)惠,指針指向其他區(qū)域無(wú)優(yōu)惠;方式二:同時(shí)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)甲和轉(zhuǎn)盤(pán)乙,若兩個(gè)轉(zhuǎn)盤(pán)的指針均指向折扣區(qū)域時(shí),所購(gòu)物品享受折上折的優(yōu)惠,其他情況無(wú)優(yōu)惠.(1)若顧客選擇方式一,則享受優(yōu)惠的概率為;(2)若顧客選擇方式二,請(qǐng)用樹(shù)狀圖或列表法列出所有可能顧客享受折上折優(yōu)惠的概率.23.(8分)如圖,已知拋物線與x軸負(fù)半軸相交于點(diǎn)A,與y軸正半軸相交于點(diǎn)B,,直線l過(guò)A、B兩點(diǎn),點(diǎn)D為線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)D作軸于點(diǎn)C,交拋物線于點(diǎn)
E.(1)求拋物線的解析式;(2)若拋物線與x軸正半軸交于點(diǎn)F,設(shè)點(diǎn)D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請(qǐng)寫(xiě)出S與x的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個(gè)最大值;并寫(xiě)出此時(shí)點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.(3)連接BE,是否存在點(diǎn)D,使得和相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由.24.(10分)“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門(mén)抽樣調(diào)查了某單位員工上下班的交通方式,繪制了兩幅統(tǒng)計(jì)圖:(1)樣本中的總?cè)藬?shù)為人;扇形統(tǒng)計(jì)十圖中“騎自行車(chē)”所在扇形的圓心角為度;(2)補(bǔ)全條形統(tǒng)計(jì)圖;(3)該單位共有1000人,積極踐行這種生活方式,越來(lái)越多的人上下班由開(kāi)私家車(chē)改為騎自行車(chē).若步行,坐公交車(chē)上下班的人數(shù)保持不變,問(wèn)原來(lái)開(kāi)私家車(chē)的人中至少有多少人改為騎自行車(chē),才能使騎自行車(chē)的人數(shù)不低于開(kāi)私家車(chē)的人數(shù)?25.(10分)如圖①,二次函數(shù)的拋物線的頂點(diǎn)坐標(biāo)C,與x軸的交于A(1,0)、B(﹣3,0)兩點(diǎn),與y軸交于點(diǎn)D(0,3).(1)求這個(gè)拋物線的解析式;(2)如圖②,過(guò)點(diǎn)A的直線與拋物線交于點(diǎn)E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為﹣2,若直線PQ為拋物線的對(duì)稱軸,點(diǎn)G為直線PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G、H、F四點(diǎn)所圍成的四邊形周長(zhǎng)最???若存在,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;(3)如圖③,連接AC交y軸于M,在x軸上是否存在點(diǎn)P,使以P、C、M為頂點(diǎn)的三角形與△AOM相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.26.(12分)如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+m與雙曲線y=﹣相交于點(diǎn)A(m,2).(1)求直線y=kx+m的表達(dá)式;(2)直線y=kx+m與雙曲線y=﹣的另一個(gè)交點(diǎn)為B,點(diǎn)P為x軸上一點(diǎn),若AB=BP,直接寫(xiě)出P點(diǎn)坐標(biāo).27.(12分)已知AC,EC分別為四邊形ABCD和EFCG的對(duì)角線,點(diǎn)E在△ABC內(nèi),∠CAE+∠CBE=1.(1)如圖①,當(dāng)四邊形ABCD和EFCG均為正方形時(shí),連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長(zhǎng);(2)如圖②,當(dāng)四邊形ABCD和EFCG均為矩形,且時(shí),若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當(dāng)四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時(shí),設(shè)BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關(guān)系.(直接寫(xiě)出結(jié)果,不必寫(xiě)出解答過(guò)程)
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
首先根據(jù)有理數(shù)a,b在數(shù)軸上的位置判斷出a、b兩數(shù)的符號(hào),從而確定答案.【詳解】由數(shù)軸可知:a<0<b,a<-1,0<b<1,所以,A.a+b<0,故原選項(xiàng)錯(cuò)誤;B.ab<0,故原選項(xiàng)錯(cuò)誤;C.a-b<0,故原選項(xiàng)錯(cuò)誤;D.,正確.故選D.【點(diǎn)睛】本題考查了數(shù)軸及有理數(shù)的乘法,數(shù)軸上的數(shù):右邊的數(shù)總是大于左邊的數(shù),從而確定a,b的大小關(guān)系.2、A【解析】
利用垂徑定理的推論得出DO⊥AB,AF=BF,進(jìn)而得出DF的長(zhǎng)和△DEF∽△CEA,再利用相似三角形的性質(zhì)求出即可.【詳解】連接DO,交AB于點(diǎn)F,∵D是的中點(diǎn),∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位線,AC∥DO,∵BC為直徑,AB=8,AC=6,∴BC=10,F(xiàn)O=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故選:A.【點(diǎn)睛】此題主要考查了垂徑定理的推論以及相似三角形的判定與性質(zhì),根據(jù)已知得出△DEF∽△CEA是解題關(guān)鍵.3、B【解析】
作PA⊥x軸于點(diǎn)A,構(gòu)造直角三角形,根據(jù)三角函數(shù)的定義求解.【詳解】過(guò)P作x軸的垂線,交x軸于點(diǎn)A,
∵P(2,4),
∴OA=2,AP=4,.
∴∴.故選B.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是銳角三角函數(shù)的定義,解題關(guān)鍵是熟記三角函數(shù)的定義.4、A【解析】
由頻數(shù)分布表可知后兩組的頻數(shù)和為10,即可得知總?cè)藬?shù),結(jié)合前兩組的頻數(shù)知出現(xiàn)次數(shù)最多的數(shù)據(jù)及第15、16個(gè)數(shù)據(jù)的平均數(shù),可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數(shù)和為,則總?cè)藬?shù)為,故該組數(shù)據(jù)的眾數(shù)為14歲,中位數(shù)為(歲),所以對(duì)于不同的x,關(guān)于年齡的統(tǒng)計(jì)量不會(huì)發(fā)生改變的是眾數(shù)和中位數(shù),故選A.【點(diǎn)睛】本題主要考查頻數(shù)分布表及統(tǒng)計(jì)量的選擇,由表中數(shù)據(jù)得出數(shù)據(jù)的總數(shù)是根本,熟練掌握平均數(shù)、中位數(shù)、眾數(shù)及方差的定義和計(jì)算方法是解題的關(guān)鍵.5、C【解析】
根據(jù)倒數(shù)的定義,分別進(jìn)行判斷即可得出答案.【詳解】∵①1和1;1×1=1,故此選項(xiàng)正確;②-1和1;-1×1=-1,故此選項(xiàng)錯(cuò)誤;③0和0;0×0=0,故此選項(xiàng)錯(cuò)誤;④?和?1,-×(-1)=1,故此選項(xiàng)正確;∴互為倒數(shù)的是:①④,故選C.【點(diǎn)睛】此題主要考查了倒數(shù)的概念及性質(zhì).倒數(shù)的定義:若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).6、D【解析】如圖:∵AB=5,,∴D=4,∵,∴,∴AC=4,∵在RT△AD中,D,AD=8,∴A=,故答案為D.7、B【解析】
根據(jù)整式的加減乘除乘方運(yùn)算法則逐一運(yùn)算即可?!驹斀狻緼.,故A選項(xiàng)錯(cuò)誤。B.,故B選項(xiàng)正確。C.,故C選項(xiàng)錯(cuò)誤。D.,故D選項(xiàng)錯(cuò)誤。故答案選B.【點(diǎn)睛】本題考查整式加減乘除運(yùn)算法則,只需熟記法則與公式即可。8、C【解析】
由于其中一名學(xué)生想要知道自己能否進(jìn)入前3名,共有7名選手參加,故應(yīng)根據(jù)中位數(shù)的意義分析.【詳解】由于總共有7個(gè)人,且他們的成績(jī)各不相同,第4的成績(jī)是中位數(shù),要判斷是否進(jìn)入前3名,故應(yīng)知道中位數(shù)的多少.故選C.【點(diǎn)睛】此題主要考查統(tǒng)計(jì)的有關(guān)知識(shí),主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.反映數(shù)據(jù)集中程度的統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對(duì)統(tǒng)計(jì)量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.9、D【解析】
將拋物線y=12【詳解】由題意得,a=-12設(shè)旋轉(zhuǎn)180°以后的頂點(diǎn)為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉(zhuǎn)180°以后的頂點(diǎn)為(2,1),∴旋轉(zhuǎn)180°以后所得圖象的解析式為:y=-1故選D.【點(diǎn)睛】本題考查了二次函數(shù)圖象的旋轉(zhuǎn)變換,在繞拋物線某點(diǎn)旋轉(zhuǎn)180°以后,二次函數(shù)的開(kāi)口大小沒(méi)有變化,方向相反;設(shè)旋轉(zhuǎn)前的的頂點(diǎn)為(x,y),旋轉(zhuǎn)中心為(a,b),由中心對(duì)稱的性質(zhì)可知新頂點(diǎn)坐標(biāo)為(2a-x,2b-y),從而可求出旋轉(zhuǎn)后的函數(shù)解析式.10、D【解析】
由不等式組有解且滿足已知不等式,以及分式方程有整數(shù)解,確定出滿足題意整數(shù)a的值即可.【詳解】不等式組整理得:,由不等式組有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=,由分式方程有整數(shù)解,得到a=0,2,共2個(gè),故選:D.【點(diǎn)睛】本題考查了分式方程的解,解一元一次不等式,以及解一元一次不等式組,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.11、C【解析】【分析】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值小于1時(shí),n是負(fù)數(shù).【詳解】2500000000的小數(shù)點(diǎn)向左移動(dòng)9位得到2.5,所以2500000000用科學(xué)記數(shù)表示為:2.5×1.故選C.【點(diǎn)睛】本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.12、C【解析】試題分析:大于0而小于1的數(shù)用科學(xué)計(jì)數(shù)法表示,10的指數(shù)是負(fù)整數(shù),其絕對(duì)值等于第一個(gè)不是0的數(shù)字前所有0的個(gè)數(shù).考點(diǎn):用科學(xué)計(jì)數(shù)法計(jì)數(shù)二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、.【解析】試題分析:∵關(guān)于x的一元二次方程有兩個(gè)相等的實(shí)數(shù)根,∴.考點(diǎn):一元二次方程根的判別式.14、10π【解析】
解:根據(jù)圓錐的側(cè)面積公式可得這個(gè)圓錐的側(cè)面積=?1π?4?5=10π(cm1).故答案為:10π【點(diǎn)睛】本題考查圓錐的計(jì)算.15、x≥【解析】
根據(jù)題意列出不等式,依據(jù)解不等式得基本步驟求解可得.【詳解】解:根據(jù)題意,得:,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥,故答案為x≥.【點(diǎn)睛】本題主要考查解不等式得基本技能,熟練掌握解一元一次不等式的基本步驟是解題的關(guān)鍵.16、-9【解析】
根據(jù)有理數(shù)的計(jì)算即可求解.【詳解】(-2)×3+(-3)=-6-3=-9【點(diǎn)睛】此題主要考查有理數(shù)的混合運(yùn)算,解題的關(guān)鍵是熟知有理數(shù)的運(yùn)算法則.17、6.4【解析】
根據(jù)平行投影,同一時(shí)刻物長(zhǎng)與影長(zhǎng)的比值固定即可解題.【詳解】解:由題可知:,解得:樹(shù)高=6.4米.【點(diǎn)睛】本題考查了投影的實(shí)際應(yīng)用,屬于簡(jiǎn)單題,熟悉投影概念,列比例式是解題關(guān)鍵.18、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考慮通過(guò)作輔助線轉(zhuǎn)化DN,MN的值,從而找出其最小值求解.解答:解:如圖,連接BM,∵點(diǎn)B和點(diǎn)D關(guān)于直線AC對(duì)稱,∴NB=ND,則BM就是DN+MN的最小值,∵正方形ABCD的邊長(zhǎng)是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故答案為1.點(diǎn)評(píng):考查正方形的性質(zhì)和軸對(duì)稱及勾股定理等知識(shí)的綜合應(yīng)用.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)、(t+6,t);(2)、當(dāng)t=2時(shí),S有最小值是16;(3)、理由見(jiàn)解析.【解析】
(1)如圖所示,過(guò)點(diǎn)E作EG⊥x軸于點(diǎn)G,則∠COP=∠PGE=90°,由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點(diǎn)E的坐標(biāo)為(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴當(dāng)t=2時(shí),S有最小值是16;(3)①假設(shè)∠FBD為直角,則點(diǎn)F在直線BC上,∵PF=OP<AB,∴點(diǎn)F不可能在BC上,即∠FBD不可能為直角;②假設(shè)∠FDB為直角,則點(diǎn)D在EF上,∵點(diǎn)D在矩形的對(duì)角線PE上,∴點(diǎn)D不可能在EF上,即∠FDB不可能為直角;③假設(shè)∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°,如圖2,作FH⊥BD于點(diǎn)H,則FH=PA,即4﹣t=6﹣t,方程無(wú)解,∴假設(shè)不成立,即△BDF不可能是等腰直角三角形.20、(1)圖形見(jiàn)解析;(2)1;(3)1.【解析】
(1)由A的人數(shù)及其所占百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其它類別人數(shù)求得B的人數(shù)即可補(bǔ)全圖形;(2)根據(jù)眾數(shù)的定義求解可得;(3)用總?cè)藬?shù)乘以樣本中D和E人數(shù)占總?cè)藬?shù)的比例即可得.【詳解】解:(1)∵被調(diào)查的總?cè)藬?shù)為20÷20%=100(人),則輔導(dǎo)1個(gè)學(xué)科(B類別)的人數(shù)為100﹣(20+30+10+5)=35(人),補(bǔ)全圖形如下:(2)根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導(dǎo)班的學(xué)科數(shù)的眾數(shù)是1個(gè)學(xué)科,故答案為1;(3)估計(jì)該校全體學(xué)生一周內(nèi)參加課外輔導(dǎo)班在3個(gè)學(xué)科(含3個(gè)學(xué)科)以上的學(xué)生共有2000×=1(人),故答案為1.【點(diǎn)睛】此題主要考查了條形統(tǒng)計(jì)圖的應(yīng)用以及扇形統(tǒng)計(jì)圖應(yīng)用、利用樣本估計(jì)總體等知識(shí),利用圖形得出正確信息求出樣本容量是解題關(guān)鍵.21、2,1【解析】
根據(jù)題意得出不等式組,解不等式組求得其解集即可.【詳解】根據(jù)題意得,解不等式①,得:x≤1,解不等式②,得:x>1,則不等式組的解集為1<x≤1,∴x可取的整數(shù)值是2,1.【點(diǎn)睛】本題考查了解不等式組的能力,根據(jù)題意得出不等式組是解題的關(guān)鍵.22、(1);(2).【解析】
(1)根據(jù)題意和圖形,可以求得顧客選擇方式一,享受優(yōu)惠的概率;(2)根據(jù)題意可以畫(huà)出相應(yīng)的樹(shù)狀圖,從而可以求得相應(yīng)的概率.【詳解】解:(1)由題意可得,顧客選擇方式一,則享受優(yōu)惠的概率為:,故答案為:;(2)樹(shù)狀圖如下圖所示,則顧客享受折上折優(yōu)惠的概率是:,即顧客享受折上折優(yōu)惠的概率是.【點(diǎn)睛】本題考查列表法與樹(shù)狀圖法,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的樹(shù)狀圖,求出相應(yīng)的概率.23、(1);(2)與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為.(3)存在點(diǎn)D,使得和相似,此時(shí)點(diǎn)D的坐標(biāo)為或.【解析】
利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)A、B的坐標(biāo),結(jié)合即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;由點(diǎn)A、B的坐標(biāo)可得出直線AB的解析式待定系數(shù)法,由點(diǎn)D的橫坐標(biāo)可得出點(diǎn)D、E的坐標(biāo),進(jìn)而可得出DE的長(zhǎng)度,利用三角形的面積公式結(jié)合即可得出S關(guān)于x的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問(wèn)題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設(shè)點(diǎn)D的坐標(biāo)為,則點(diǎn)E的坐標(biāo)為,進(jìn)而可得出DE、BD的長(zhǎng)度當(dāng)時(shí),利用等腰直角三角形的性質(zhì)可得出,進(jìn)而可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論;當(dāng)時(shí),由點(diǎn)B的縱坐標(biāo)可得出點(diǎn)E的縱坐標(biāo)為4,結(jié)合點(diǎn)E的坐標(biāo)即可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論綜上即可得出結(jié)論.【詳解】當(dāng)時(shí),有,解得:,,點(diǎn)A的坐標(biāo)為.當(dāng)時(shí),,點(diǎn)B的坐標(biāo)為.,,解得:,拋物線的解析式為.點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,直線AB的解析式為.點(diǎn)D的橫坐標(biāo)為x,則點(diǎn)D的坐標(biāo)為,點(diǎn)E的坐標(biāo)為,如圖.點(diǎn)F的坐標(biāo)為,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,,,,.,當(dāng)時(shí),S取最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為,與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為.,,若要和相似,只需或如圖.設(shè)點(diǎn)D的坐標(biāo)為,則點(diǎn)E的坐標(biāo)為,,當(dāng)時(shí),,,,為等腰直角三角形.,即,解得:舍去,,點(diǎn)D的坐標(biāo)為;當(dāng)時(shí),點(diǎn)E的縱坐標(biāo)為4,,解得:,舍去,點(diǎn)D的坐標(biāo)為.綜上所述:存在點(diǎn)D,使得和相似,此時(shí)點(diǎn)D的坐標(biāo)為或.故答案為:(1);(2)與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為.(3)存在點(diǎn)D,使得和相似,此時(shí)點(diǎn)D的坐標(biāo)為或.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積、二次函數(shù)的性質(zhì)、相似三角形的判定、等腰直角三角形以及解一元二次方程,解題的關(guān)鍵是:利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)A、B的坐標(biāo);利用三角形的面積找出S關(guān)于x的函數(shù)關(guān)系式;分及兩種情況求出點(diǎn)D的坐標(biāo).24、(1)80、72;(2)16人;(3)50人【解析】
(1)用步行人數(shù)除以其所占的百分比即可得到樣本總?cè)藬?shù):810%=80(人);用總?cè)藬?shù)乘以開(kāi)私家車(chē)的所占百分比即可求出m,即m=8025%=20;用3600乘以騎自行車(chē)所占的百分比即可求出其所在扇形的圓心角:360(1-10%-25%-45%)=.(2)根據(jù)扇形統(tǒng)計(jì)圖算出騎自行車(chē)的所占百分比,再用總?cè)藬?shù)乘以該百分比即可求出騎自行車(chē)的人數(shù),補(bǔ)全條形圖即可.(3)依題意設(shè)原來(lái)開(kāi)私家車(chē)的人中有x人改為騎自行車(chē),用x分別表示改變出行方式后的騎自行車(chē)和開(kāi)私家車(chē)的人數(shù),根據(jù)題意列出一元一次不等式,解不等式即可.【詳解】解:(1)樣本中的總?cè)藬?shù)為8÷10%=80人,∵騎自行車(chē)的百分比為1﹣(10%+25%+45%)=20%,∴扇形統(tǒng)計(jì)十圖中“騎自行車(chē)”所在扇形的圓心角為360°×20%=72°(2)騎自行車(chē)的人數(shù)為80×20%=16人,補(bǔ)全圖形如下:(3)設(shè)原來(lái)開(kāi)私家車(chē)的人中有x人改騎自行車(chē),由題意,得:1000×(1﹣10%﹣25%﹣45%)+x≥1000×25%﹣x,解得:x≥50,∴原來(lái)開(kāi)私家車(chē)的人中至少有50人改為騎自行車(chē),才能使騎自行車(chē)的人數(shù)不低于開(kāi)私家車(chē)的人數(shù).【點(diǎn)睛】本題主要考查統(tǒng)計(jì)圖表和一元一次不等式的應(yīng)用。25、【小題1】設(shè)所求拋物線的解析式為:,將A(1,0)、B(-3,0)、D(0,3)代入,得…………2分即所求拋物線的解析式為:……………3分【小題2】如圖④,在y軸的負(fù)半軸上取一點(diǎn)I,使得點(diǎn)F與點(diǎn)I關(guān)于x軸對(duì)稱,在x軸上取一點(diǎn)H,連接HF、HI、HG、GD、GE,則HF=HI…①設(shè)過(guò)A、E兩點(diǎn)的一次函數(shù)解析式為:y=kx+b(k≠0),∵點(diǎn)E在拋物線上且點(diǎn)E的橫坐標(biāo)為-2,將x=-2,代入拋物線,得∴點(diǎn)E坐標(biāo)為(-2,3)………………4分又∵拋物線圖象分別與x軸、y軸交于點(diǎn)A(1,0)、B(-3,0)、D(0,3),所以頂點(diǎn)C(-1,4)∴拋物線的對(duì)稱軸直線PQ為:直線x=-1,[中國(guó)教#&~@育出%版網(wǎng)]∴點(diǎn)D與點(diǎn)E關(guān)于PQ對(duì)稱,GD=GE……………②分別將點(diǎn)A(1,0)、點(diǎn)E(-2,3)代入y=kx+b,得:k+b=0,-2k+b=3解得:過(guò)A、E兩點(diǎn)的一次函數(shù)解析式為:y=-x+1∴當(dāng)x=0時(shí),y=1∴點(diǎn)F坐標(biāo)為(0,1)……5分∴|DF|=2………③又∵點(diǎn)F與點(diǎn)I關(guān)于x軸對(duì)稱,∴點(diǎn)I坐標(biāo)為(0,-1)∴|EI|=(-2-0)又∵要使四邊形DFHG的周長(zhǎng)最小,由于DF是一個(gè)定值,∴只要使DG+GH+HI最小即可……6分由圖形的對(duì)稱性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有當(dāng)EI為一條直線時(shí),EG+GH+HI最小設(shè)過(guò)E(-2,3)、I(0,-1)兩點(diǎn)的函數(shù)解析式為:y=k分別將點(diǎn)E(-2,3)、點(diǎn)I(0,-1)代入y=k-2k1過(guò)I、E兩點(diǎn)的一次函數(shù)解析式為:y=-2x-1∴當(dāng)x=-1時(shí),y=1;當(dāng)y=0時(shí),x=-12∴點(diǎn)G坐標(biāo)為(-1,1),點(diǎn)H坐標(biāo)為(-12∴四邊形DFHG的周長(zhǎng)最小為:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2∴四邊形DFHG的周長(zhǎng)最小為2+25【小題3】如圖⑤,由(2)可知,點(diǎn)A(1,0),點(diǎn)C(-1,4),設(shè)過(guò)A(1,0),點(diǎn)C(-1,4)兩點(diǎn)的函數(shù)解析式為:,得:k2解得:k2過(guò)A、C兩點(diǎn)的一次函數(shù)解析式為:y=-2x+2,當(dāng)x=0時(shí),y=2,即M的坐標(biāo)為(0,2);由圖可知,△AOM為直角三角形,且OAOM要使,△AOM與△PCM相似,只要使△PCM為直角三角形,且兩直角邊之比為1:2即可,設(shè)P(,0),CM=,且∠CPM不可能為90°時(shí),因此可分兩種情況討論;……………9分①當(dāng)∠CMP=90°時(shí),CM=,若則,可求的P(-4,0),則CP=5,,即P(-4,0)成立,若由圖可判斷不成立;……………………10分②當(dāng)∠PCM=90°時(shí),CM=,若則,可求出P(-3,0),則PM=,顯然不成立,若則,更不可能成立.……11分綜上所述,存在以P、C、M為頂點(diǎn)的三角形與△AOM相似,點(diǎn)P的坐標(biāo)為(-4,0)12分【解析】(1)直接利用三點(diǎn)式求出二次函數(shù)的解析式;(2)若四邊形DFHG的周長(zhǎng)最小,應(yīng)將邊長(zhǎng)進(jìn)行
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防設(shè)施電伴熱施工合同
- 建筑拆除施工總價(jià)承包合同
- 互聯(lián)網(wǎng)公司CTO招聘合同樣本
- 物流運(yùn)輸木門(mén)更換工程合同
- 汽車(chē)維修項(xiàng)目審計(jì)要點(diǎn)
- 建筑隔震工程倒板施工協(xié)議
- 媒體行業(yè)薪酬分配改革管理辦法
- 網(wǎng)絡(luò)文學(xué)改編劇招聘合同
- 咨詢公司公關(guān)部聘用合同
- 建筑檢測(cè)探傷施工合同
- DZ∕T 0258-2014 多目標(biāo)區(qū)域地球化學(xué)調(diào)查規(guī)范(1:250000)(正式版)
- 大學(xué)生生涯發(fā)展展示 (修改)
- 2024年鄂爾多斯市國(guó)資產(chǎn)投資控股集團(tuán)限公司招聘公開(kāi)引進(jìn)高層次人才和急需緊缺人才筆試參考題庫(kù)(共500題)答案詳解版
- 校企共建實(shí)驗(yàn)室方案
- 2024年電商直播行業(yè)現(xiàn)狀及發(fā)展趨勢(shì)研究
- 2021年4月自考04735數(shù)據(jù)庫(kù)系統(tǒng)原理試題及答案含解析
- MOOC 管理學(xué)原理-東北財(cái)經(jīng)大學(xué) 中國(guó)大學(xué)慕課答案
- 農(nóng)貿(mào)市場(chǎng)食品安全事故處置方案
- 六年級(jí)語(yǔ)文總復(fù)習(xí)課《修改病句》修改課件市公開(kāi)課一等獎(jiǎng)省賽課獲獎(jiǎng)?wù)n件
- (2024年)部隊(duì)?wèi)?zhàn)備教育教案x
- 《焚燒煙氣凈化產(chǎn)物資源化利用 工業(yè)用鹽》編制說(shuō)明
評(píng)論
0/150
提交評(píng)論