版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.(﹣1)0+|﹣1|=()A.2B.1C.0D.﹣12.如圖,已知點A在反比例函數(shù)y=上,AC⊥x軸,垂足為點C,且△AOC的面積為4,則此反比例函數(shù)的表達式為()A.y= B.y= C.y= D.y=﹣3.四張分別畫有平行四邊形、菱形、等邊三角形、圓的卡片,它們的背面都相同?,F(xiàn)將它們背面朝上,從中任取一張,卡片上所畫圖形恰好是中心對稱圖形的概率是()A. B.1 C. D.4.下列說法中,正確的是()A.長度相等的弧是等弧B.平分弦的直徑垂直于弦,并且平分弦所對的兩條弧C.經(jīng)過半徑并且垂直于這條半徑的直線是圓的切線D.在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑5.下列說法正確的是()A.負數(shù)沒有倒數(shù)B.﹣1的倒數(shù)是﹣1C.任何有理數(shù)都有倒數(shù)D.正數(shù)的倒數(shù)比自身小6.如圖,已知△ABC,AB=AC,將△ABC沿邊BC翻轉(zhuǎn),得到的△DBC與原△ABC拼成四邊形ABDC,則能直接判定四邊形ABDC是菱形的依據(jù)是()A.四條邊相等的四邊形是菱形 B.一組鄰邊相等的平行四邊形是菱形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直平分的四邊形是菱形7.某班同學畢業(yè)時都將自己的照片向全班其他同學各送一張表示留念,全班共送1035張照片,如果全班有x名同學,根據(jù)題意,列出方程為()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=10358.如圖,數(shù)軸上的A、B、C、D四點中,與數(shù)﹣表示的點最接近的是()A.點A B.點B C.點C D.點D9.若一次函數(shù)的圖象經(jīng)過第一、二、四象限,則下列不等式一定成立的是()A. B. C. D.10.如圖,⊙O的半徑OA=6,以A為圓心,OA為半徑的弧交⊙O于B、C點,則BC=()A.6 B.6 C.3 D.311.已知點P(a,m),Q(b,n)都在反比例函數(shù)y=的圖象上,且a<0<b,則下列結論一定正確的是()A.m+n<0 B.m+n>0 C.m<n D.m>n12.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某文化用品商店計劃同時購進一批A、B兩種型號的計算器,若購進A型計算器10只和B型計算器8只,共需要資金880元;若購進A型計算器2只和B型計算器5只,共需要資金380元.則A型號的計算器的每只進價為_____元.14.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,動點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒lcm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′,設Q點運動的時間為t秒,若四邊形QP′CP為菱形,則t的值為_____.15.已知:正方形ABCD.求作:正方形ABCD的外接圓.作法:如圖,(1)分別連接AC,BD,交于點O;(2)以點O為圓心,OA長為半徑作⊙O,⊙O即為所求作的圓.請回答:該作圖的依據(jù)是__________________________________.16.反比例函數(shù)y=與正比例函數(shù)y=k2x的圖象的一個交點為(2,m),則=____.17.鼓勵科技創(chuàng)新、技術發(fā)明,北京市2012-2017年專利授權量如圖所示.根據(jù)統(tǒng)計圖中提供信息,預估2018年北京市專利授權量約______件,你的預估理由是______.18.一個多邊形,除了一個內(nèi)角外,其余各角的和為2750°,則這一內(nèi)角為_____度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.判斷直線CD和⊙O的位置關系,并說明理由.過點B作⊙O的切線BE交直線CD于點E,若AC=2,⊙O的半徑是3,求BE的長.20.(6分)有這樣一個問題:探究函數(shù)的圖象與性質(zhì).小懷根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.下面是小懷的探究過程,請補充完成:(1)函數(shù)的自變量x的取值范圍是;(2)列出y與x的幾組對應值.請直接寫出m的值,m=;(3)請在平面直角坐標系xOy中,描出表中各對對應值為坐標的點,并畫出該函數(shù)的圖象;(4)結合函數(shù)的圖象,寫出函數(shù)的一條性質(zhì).21.(6分)在□ABCD中,E為BC邊上一點,且AB=AE,求證:AC=DE。22.(8分)先化簡分式:(-)÷?,再從-3、-3、2、-2中選一個你喜歡的數(shù)作為的值代入求值.23.(8分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大?。?4.(10分)如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC∥x軸,點P是直線AC下方拋物線上的動點.(1)求拋物線的解析式;(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.25.(10分)(1)計算:;(2)已知a﹣b=,求(a﹣2)2+b(b﹣2a)+4(a﹣1)的值.26.(12分)某市旅游景區(qū)有A、B、C、D、E等著名景點,該市旅游部門統(tǒng)計繪制出2018年春節(jié)期間旅游情況統(tǒng)計圖(如圖),根據(jù)圖中信息解答下列問題:(1)2018年春節(jié)期間,該市A、B、C、D、E這五個景點共接待游客人數(shù)為多少?(2)扇形統(tǒng)計圖中E景點所對應的圓心角的度數(shù)是,并補全條形統(tǒng)計圖.(3)甲,乙兩個旅行團在A、B、D三個景點中隨機選擇一個,求這兩個旅行團選中同一景點的概率.27.(12分)如圖,點P是⊙O外一點,請你用尺規(guī)畫出一條直線PA,使得其與⊙O相切于點A,(不寫作法,保留作圖痕跡)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
根據(jù)絕對值和數(shù)的0次冪的概念作答即可.【詳解】原式=1+1=2故答案為:A.【點睛】本題考查的知識點是絕對值和數(shù)的0次冪,解題關鍵是熟記數(shù)的0次冪為1.2、C【解析】
由雙曲線中k的幾何意義可知據(jù)此可得到|k|的值;由所給圖形可知反比例函數(shù)圖象的兩支分別在第一、三象限,從而可確定k的正負,至此本題即可解答.【詳解】∵S△AOC=4,∴k=2S△AOC=8;∴y=;故選C.【點睛】本題是關于反比例函數(shù)的題目,需結合反比例函數(shù)中系數(shù)k的幾何意義解答;3、A【解析】∵在:平行四邊形、菱形、等邊三角形和圓這4個圖形中屬于中心對稱圖形的有:平行四邊形、菱形和圓三種,∴從四張卡片中任取一張,恰好是中心對稱圖形的概率=.故選A.4、D【解析】
根據(jù)切線的判定,圓的知識,可得答案.【詳解】解:A、在等圓或同圓中,長度相等的弧是等弧,故A錯誤;B、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧,故B錯誤;C、經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線,故C錯誤;D、在同圓或等圓中90°的圓周角所對的弦是這個圓的直徑,故D正確;故選:D.【點睛】本題考查了切線的判定及圓的知識,利用圓的知識及切線的判定是解題關鍵.5、B【解析】
根據(jù)倒數(shù)的定義解答即可.【詳解】A、只有0沒有倒數(shù),該項錯誤;B、﹣1的倒數(shù)是﹣1,該項正確;C、0沒有倒數(shù),該項錯誤;D、小于1的正分數(shù)的倒數(shù)大于1,1的倒數(shù)等于1,該項錯誤.故選B.【點睛】本題主要考查倒數(shù)的定義:兩個實數(shù)的乘積是1,則這兩個數(shù)互為倒數(shù),熟練掌握這個知識點是解答本題的關鍵.6、A【解析】
根據(jù)翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根據(jù)菱形的判定推出即可.【詳解】∵
將
△ABC
延底邊
BC
翻折得到
△DBC
,∴AB=BD
,
AC=CD
,∵AB=AC
,∴AB=BD=CD=AC
,∴
四邊形
ABDC
是菱形;故選A.【點睛】本題考查了菱形的判定方法:四邊都相等的四邊形是菱形;對角線互相垂直的平行四邊形是菱形;有一組鄰邊相等的平行四邊形是菱形.7、B【解析】試題分析:如果全班有x名同學,那么每名同學要送出(x-1)張,共有x名學生,那么總共送的張數(shù)應該是x(x-1)張,即可列出方程.∵全班有x名同學,∴每名同學要送出(x-1)張;又∵是互送照片,∴總共送的張數(shù)應該是x(x-1)=1.故選B考點:由實際問題抽象出一元二次方程.8、B【解析】
,計算-1.732與-3,-2,-1的差的絕對值,確定絕對值最小即可.【詳解】,,,,因為0.268<0.732<1.268,所以表示的點與點B最接近,故選B.9、D【解析】∵一次函數(shù)y=ax+b的圖象經(jīng)過第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A錯誤,a?b<0,故B錯誤,ab<0,故C錯誤,<0,故D正確.故選D.10、A【解析】試題分析:根據(jù)垂徑定理先求BC一半的長,再求BC的長.解:如圖所示,設OA與BC相交于D點.∵AB=OA=OB=6,∴△OAB是等邊三角形.又根據(jù)垂徑定理可得,OA平分BC,利用勾股定理可得BD=所以BC=2BD=.故選A.點睛:本題主要考查垂徑定理和勾股定理.解題的關鍵在于要利用好題中的條件圓O與圓A的半徑相等,從而得出△OAB是等邊三角形,為后繼求解打好基礎.11、D【解析】
根據(jù)反比例函數(shù)的性質(zhì),可得答案.【詳解】∵y=?的k=-2<1,圖象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正確;故選D.【點睛】本題考查了反比例函數(shù)的性質(zhì),利用反比例函數(shù)的性質(zhì):k<1時,圖象位于二四象限是解題關鍵.12、D【解析】
根據(jù)全等三角形的性質(zhì)可知A,B,C命題均正確,故選項均錯誤;D.錯誤,全等三角也可能是直角三角,故選項正確.故選D.【點睛】本題考查全等三角形的性質(zhì),兩三角形全等,其對應邊和對應角都相等.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、40【解析】
設A型號的計算器的每只進價為x元,B型號的計算器的每只進價為y元,根據(jù)“若購進A型計算器10只和B型計算器8只,共需要資金880元;若購進A型計算器2只和B型計算器5只,共需要資金380元”,即可得出關于x、y的二元一次方程組,解之即可得出結論.【詳解】設A型號的計算器的每只進價為x元,B型號的計算器的每只進價為y元,根據(jù)題意得:,解得:.答:A型號的計算器的每只進價為40元.【點睛】本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.14、1【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC為直角三角形,∴∠A=∠B=45°,∴△APE和△PBD為等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四邊形PECD為矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四邊形QPCP′為菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值為1.故答案為1.【點睛】
此題主要考查了菱形的性質(zhì),勾股定理,關鍵是要熟記定理的內(nèi)容并會應用.15、正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【解析】
利用正方形的性質(zhì)得到OA=OB=OC=OD,則以點O為圓心,OA長為半徑作⊙O,點B、C、D都在⊙O上,從而得到⊙O為正方形的外接圓.【詳解】∵四邊形ABCD為正方形,∴OA=OB=OC=OD,∴⊙O為正方形的外接圓.故答案為正方形的對角線相等且互相垂直平分;點到圓心的距離等于圓的半徑的點在這個圓上;四邊形的四個頂點在同一個圓上,這個圓叫四邊形的外接圓.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質(zhì)和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質(zhì),結合幾何圖形的基本性質(zhì)把復雜作圖拆解成基本作圖,逐步操作.16、4【解析】
利用交點(2,m)同時滿足在正比例函數(shù)和反比例函數(shù)上,分別得出m和、的關系.【詳解】把點(2,m)代入反比例函數(shù)和正比例函數(shù)中得,,,則.【點睛】本題主要考查了函數(shù)的交點問題和待定系數(shù)法,熟練掌握待定系數(shù)法是本題的解題關鍵.17、113407,北京市近兩年的專利授權量平均每年增加6458.5件.【解析】
依據(jù)北京市近兩年的專利授權量的增長速度,即可預估2018年北京市專利授權量.【詳解】解:∵北京市近兩年的專利授權量平均每年增加:(件),∴預估2018年北京市專利授權量約為106948+6458.5≈113407(件),故答案為:113407,北京市近兩年的專利授權量平均每年增加6458.5件.【點睛】此題考查統(tǒng)計圖的意義,解題的關鍵在于看懂圖中數(shù)據(jù).18、130【解析】分析:n邊形的內(nèi)角和是因而內(nèi)角和一定是180度的倍數(shù).而多邊形的內(nèi)角一定大于0,并且小于180度,因而內(nèi)角和除去一個內(nèi)角的值,這個值除以180度,所得數(shù)值比邊數(shù)要小,小的值小于1.詳解:設多邊形的邊數(shù)為x,由題意有解得因而多邊形的邊數(shù)是18,則這一內(nèi)角為故答案為點睛:考查多邊形的內(nèi)角和公式,熟記多邊形的內(nèi)角和公式是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、解:(1)直線CD和⊙O的位置關系是相切,理由見解析(2)BE=1.【解析】試題分析:(1)連接OD,可知由直徑所對的圓周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,從而得∠CDO=90°,根據(jù)切線的判定即可得出;(2)由已知利用勾股定理可求得DC的長,根據(jù)切線長定理有DE=EB,根據(jù)勾股定理得出方程,求出方程的解即可.試題解析:(1)直線CD和⊙O的位置關系是相切,理由是:連接OD,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直線CD是⊙O的切線,即直線CD和⊙O的位置關系是相切;(2)∵AC=2,⊙O的半徑是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,設DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,則(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考點:1、切線的判定與性質(zhì);2、切線長定理;3、勾股定理;4、圓周角定理20、(1)x≠﹣1;(2)2;(2)見解析;(4)在x<﹣1和x>﹣1上均單調(diào)遞增;【解析】
(1)根據(jù)分母非零即可得出x+1≠0,解之即可得出自變量x的取值范圍;(2)將y=代入函數(shù)解析式中求出x值即可;(2)描點、連線畫出函數(shù)圖象;(4)觀察函數(shù)圖象,寫出函數(shù)的一條性質(zhì)即可.【詳解】解:(1)∵x+1≠0,∴x≠﹣1.故答案為x≠﹣1.(2)當y==時,解得:x=2.故答案為2.(2)描點、連線畫出圖象如圖所示.(4)觀察函數(shù)圖象,發(fā)現(xiàn):函數(shù)在x<﹣1和x>﹣1上均單調(diào)遞增.【點睛】本題考查了反比例函數(shù)的性質(zhì)以及函數(shù)圖象,根據(jù)給定數(shù)據(jù)描點、連線畫出函數(shù)圖象是解題的關鍵.21、見解析【解析】
在ABC和EAD中已經(jīng)有一條邊和一個角分別相等,根據(jù)平行的性質(zhì)和等邊對等角得出∠B=∠DAE證得ABC≌EAD,繼而證得AC=DE.【詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD(SAS),∴AC=DE.【點睛】本題主要考查了平行四邊形的基本性質(zhì)和全等三角形的判定及性質(zhì),判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.22、;5【解析】
原式=(-)?=?=?=a=2,原式=523、(1)證明見解析;(2)110°.【解析】分析:(1)欲證明DB=DE,只要證明∠BED=∠ABD即可;(2)因為△OAB是等腰三角形,屬于只要求出∠OBA即可解決問題;詳解:(1)證明:∵DC⊥OA,∴∠OAB+∠CEA=90°,∵BD為切線,∴OB⊥BD,∴∠OBA+∠ABD=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠CEA=∠ABD,∵∠CEA=∠BED,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD為切線,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°-2×35°=110°.點睛:本題考查圓周角定理、切線的性質(zhì)等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.24、(1)拋物線的解析式為y=x2-2x+1,(2)四邊形AECP的面積的最大值是,點P(,﹣);(3)Q(4,1)或(-3,1).【解析】
(1)把點A,B的坐標代入拋物線的解析式中,求b,c;(2)設P(m,m2?2m+1),根據(jù)S四邊形AECP=S△AEC+S△APC,把S四邊形AECP用含m式子表示,根據(jù)二次函數(shù)的性質(zhì)求解;(3)設Q(t,1),分別求出點A,B,C,P的坐標,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判斷出∠BAC=∠PCA=45°,則要分兩種情況討論,根據(jù)相似三角形的對應邊成比例求t.【詳解】解:(1)將A(0,1),B(9,10)代入函數(shù)解析式得:×81+9b+c=10,c=1,解得b=?2,c=1,所以拋物線的解析式y(tǒng)=x2?2x+1;(2)∵AC∥x軸,A(0,1),∴x2?2x+1=1,解得x1=6,x2=0(舍),即C點坐標為(6,1),∵點A(0,1),點B(9,10),∴直線AB的解析式為y=x+1,設P(m,m2?2m+1),∴E(m,m+1),∴PE=m+1?(m2?2m+1)=?m2+3m.∵AC⊥PE,AC=6,∴S四邊形AECP=S△AEC+S△APC=AC?EF+AC?PF=AC?(EF+PF)=AC?EP=×6(?m2+3m)=?m2+9m.∵0<m<6,∴當m=時,四邊形AECP的面積最大值是,此時P();(3)∵y=x2?2x+1=(x?3)2?2,P(3,?2),PF=y(tǒng)F?yp=3,CF=xF?xC=3,∴PF=CF,∴∠PCF=45°,同理可得∠EAF=45°,∴∠PCF=∠EAF,∴在直線AC上存在滿足條件的點Q,設Q(t,1)且AB=,AC=6,CP=,∵以C,P,Q為頂點的三角形與△ABC相似,①當△CPQ∽△ABC時,CQ:AC=CP:AB,(6?t):6=,解得t=4,所以Q(4,1);②當△CQP∽△ABC時,CQ:AB=CP:AC,(6?t)6,解得t=?3,所以Q(?3,1).綜上所述:當點P為拋物線的頂點時,在直線AC上存在點Q,使得以C,P,Q為頂點的三角形與△ABC相似,Q點的坐標為(4,1)或(?3,1).【點睛】本題考查了二次函數(shù)綜合題,解(1)的關鍵是待定系數(shù)法;解(2)的關鍵是利用面積的和差得出二次函數(shù),又利用了二次函數(shù)的性質(zhì),平行于坐標軸的直線上兩點間的距離是較大的坐標減較小的坐標;解(3)的關鍵是利用相似三角形的性質(zhì)的出關于CQ的比例,要分類討論,以防遺漏.25、(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 庫存建材維修合同范例
- 建筑裝潢裝修合同范例
- 娛樂行業(yè)員工合同模板
- 客戶減肥合同范例
- 委托組裝合同范例
- 建筑土方清運合同范例
- 安徽餐飲加盟合同模板
- 加裝電梯車位合同模板
- 快遞轉(zhuǎn)讓業(yè)務合同范例
- 內(nèi)墻涂料包工合同范例
- 國旗護衛(wèi)隊訓練計劃
- 關于建立處罰裁量基準制度規(guī)范自由裁量權的調(diào)研報告
- 七年級動點問題大全給力教育課資
- 農(nóng)村土地承包法解說PPT課件
- CTD格式內(nèi)容詳解
- 海航集團空中乘務員招聘報名表
- 胃癌臨床路徑(2021年版)
- 人教中職數(shù)學球PPT學習教案
- [QC成果]戶外主變安裝防墜落懸掛裝置的研制范本
- 水文地質(zhì)勘查招標文件范本
- 抽動穢語綜合征量表(TSGS)
評論
0/150
提交評論