版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.隨著服裝市場競爭日益激烈,某品牌服裝專賣店一款服裝按原售價(jià)降價(jià)20%,現(xiàn)售價(jià)為a元,則原售價(jià)為()A.(a﹣20%)元 B.(a+20%)元 C.54a元 D.452.如圖,點(diǎn)P是∠AOB外的一點(diǎn),點(diǎn)M,N分別是∠AOB兩邊上的點(diǎn),點(diǎn)P關(guān)于OA的對稱點(diǎn)Q恰好落在線段MN上,點(diǎn)P關(guān)于OB的對稱點(diǎn)R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm3.如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正確結(jié)論的是()A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤4.當(dāng)函數(shù)y=(x-1)2-2的函數(shù)值y隨著x的增大而減小時(shí),x的取值范圍是()A. B. C. D.x為任意實(shí)數(shù)5.如圖,AB是的直徑,點(diǎn)C,D在上,若,則的度數(shù)為A. B. C. D.6.-的立方根是()A.-8 B.-4 C.-2 D.不存在7.如圖,四邊形ABCD是菱形,對角線AC,BD交于點(diǎn)O,,,于點(diǎn)H,且DH與AC交于G,則OG長度為A. B. C. D.8.如圖,在平面直角坐標(biāo)系xOy中,△由△繞點(diǎn)P旋轉(zhuǎn)得到,則點(diǎn)P的坐標(biāo)為()A.(0,1) B.(1,-1) C.(0,-1) D.(1,0)9.半徑為3的圓中,一條弦長為4,則圓心到這條弦的距離是()A.3 B.4 C. D.10.通州區(qū)大運(yùn)河森林公園占地面積10700畝,是北京規(guī)模最大的濱河森林公園,將10700用科學(xué)記數(shù)法表示為()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×104二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.已知函數(shù)y=|x2﹣x﹣2|,直線y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個(gè)交點(diǎn),則k的值為_____.12.如圖,、分別為△ABC的邊、延長線上的點(diǎn),且DE∥BC.如果,CE=16,那么AE的長為_______13.如圖,點(diǎn)A(3,n)在雙曲線y=上,過點(diǎn)A作AC⊥x軸,垂足為C.線段OA的垂直平分線交OC于點(diǎn)B,則△ABC周長的值是.14.從,0,π,3.14,6這五個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),抽到有理數(shù)的概率是____.15.若數(shù)據(jù)2、3、5、3、8的眾數(shù)是a,則中位數(shù)是b,則a﹣b等于_____.16.分解因式:________.三、解答題(共8題,共72分)17.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=m求反比例函數(shù)和一次函數(shù)的解析式;直接寫出當(dāng)x>0時(shí),kx+b<m18.(8分)如圖1,已知拋物線y=﹣x2+x+與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,點(diǎn)D是點(diǎn)C關(guān)于拋物線對稱軸的對稱點(diǎn),連接CD,過點(diǎn)D作DH⊥x軸于點(diǎn)H,過點(diǎn)A作AE⊥AC交DH的延長線于點(diǎn)E.(1)求線段DE的長度;(2)如圖2,試在線段AE上找一點(diǎn)F,在線段DE上找一點(diǎn)P,且點(diǎn)M為直線PF上方拋物線上的一點(diǎn),求當(dāng)△CPF的周長最小時(shí),△MPF面積的最大值是多少;(3)在(2)問的條件下,將得到的△CFP沿直線AE平移得到△C′F′P′,將△C′F′P′沿C′P′翻折得到△C′P′F″,記在平移過稱中,直線F′P′與x軸交于點(diǎn)K,則是否存在這樣的點(diǎn)K,使得△F′F″K為等腰三角形?若存在求出OK的值;若不存在,說明理由.19.(8分)將二次函數(shù)的解析式化為的形式,并指出該函數(shù)圖象的開口方向、頂點(diǎn)坐標(biāo)和對稱軸.20.(8分)某同學(xué)用兩個(gè)完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動,將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設(shè)AD=x(0≤x≤4),兩個(gè)直角三角形紙片重疊部分的面積為y,試求出y與x的函數(shù)關(guān)系式;(2)在運(yùn)動過程中,四邊形CDBF能否為正方形,若能,請指出此時(shí)點(diǎn)D的位置,并說明理由;若不能,請你添加一個(gè)條件,并說明四邊形CDBF為正方形?21.(8分)如圖,在矩形ABCD中,AB=4,BC=6,M是BC的中點(diǎn),DE⊥AM于點(diǎn)E.求證:△ADE∽△MAB;求DE的長.22.(10分)如圖,拋物線y=-x2+bx+c的頂點(diǎn)為C,對稱軸為直線x=1,且經(jīng)過點(diǎn)A(3,-1),與y軸交于點(diǎn)B.求拋物線的解析式;判斷△ABC的形狀,并說明理由;經(jīng)過點(diǎn)A的直線交拋物線于點(diǎn)P,交x軸于點(diǎn)Q,若S△OPA=2S△OQA,試求出點(diǎn)P的坐標(biāo).23.(12分)已知圓O的半徑長為2,點(diǎn)A、B、C為圓O上三點(diǎn),弦BC=AO,點(diǎn)D為BC的中點(diǎn),(1)如圖,連接AC、OD,設(shè)∠OAC=α,請用α表示∠AOD;(2)如圖,當(dāng)點(diǎn)B為的中點(diǎn)時(shí),求點(diǎn)A、D之間的距離:(3)如果AD的延長線與圓O交于點(diǎn)E,以O(shè)為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.24.在數(shù)學(xué)活動課上,老師提出了一個(gè)問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點(diǎn)在另一個(gè)三角尺的斜邊上移動,在這個(gè)運(yùn)動過程中,有哪些變量,能研究它們之間的關(guān)系嗎?小林選擇了其中一對變量,根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對它們之間的關(guān)系進(jìn)行了探究.下面是小林的探究過程,請補(bǔ)充完整:(1)畫出幾何圖形,明確條件和探究對象;如圖2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是線段AB上一動點(diǎn),射線DE⊥BC于點(diǎn)E,∠EDF=60°,射線DF與射線AC交于點(diǎn)F.設(shè)B,E兩點(diǎn)間的距離為xcm,E,F(xiàn)兩點(diǎn)間的距離為ycm.(2)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:x/cm0123456y/cm6.95.34.03.34.56(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù))(3)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△DEF為等邊三角形時(shí),BE的長度約為cm.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)題意列出代數(shù)式,化簡即可得到結(jié)果.【詳解】根據(jù)題意得:a÷(1?20%)=a÷45=5故答案選:C.【點(diǎn)睛】本題考查的知識點(diǎn)是列代數(shù)式,解題的關(guān)鍵是熟練的掌握列代數(shù)式.2、A【解析】試題分析:利用軸對稱圖形的性質(zhì)得出PM=MQ,PN=NR,進(jìn)而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點(diǎn):軸對稱圖形的性質(zhì)3、D【解析】
根據(jù)正方形的性質(zhì)可得AB=BC=AD,∠ABC=∠BAD=90°,再根據(jù)中點(diǎn)定義求出AE=BF,然后利用“邊角邊”證明△ABF和△DAE全等,根據(jù)全等三角形對應(yīng)角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,從而求出∠AMD=90°,再根據(jù)鄰補(bǔ)角的定義可得∠AME=90°,從而判斷①正確;根據(jù)中線的定義判斷出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判斷出②錯(cuò)誤;根據(jù)直角三角形的性質(zhì)判斷出△AED、△MAD、△MEA三個(gè)三角形相似,利用相似三角形對應(yīng)邊成比例可得,然后求出MD=2AM=4EM,判斷出④正確,設(shè)正方形ABCD的邊長為2a,利用勾股定理列式求出AF,再根據(jù)相似三角形對應(yīng)邊成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判斷出⑤正確;過點(diǎn)M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,過點(diǎn)M作GH∥AB,過點(diǎn)O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根據(jù)正方形的性質(zhì)求出BO,然后利用勾股定理逆定理判斷出∠BMO=90°,從而判斷出③正確.【詳解】在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分別為邊AB,BC的中點(diǎn),
∴AE=BF=BC,
在△ABF和△DAE中,,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正確;
∵DE是△ABD的中線,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②錯(cuò)誤;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正確;
設(shè)正方形ABCD的邊長為2a,則BF=a,
在Rt△ABF中,AF=∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正確;
如圖,過點(diǎn)M作MN⊥AB于N,
則即解得MN=,AN=,
∴NB=AB-AN=2a-=,
根據(jù)勾股定理,BM=過點(diǎn)M作GH∥AB,過點(diǎn)O作OK⊥GH于K,
則OK=a-=,MK=-a=,
在Rt△MKO中,MO=根據(jù)正方形的性質(zhì),BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正確;
綜上所述,正確的結(jié)論有①③④⑤共4個(gè).故選:D【點(diǎn)睛】本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理的應(yīng)用,勾股定理逆定理的應(yīng)用,綜合性較強(qiáng),難度較大,仔細(xì)分析圖形并作出輔助線構(gòu)造出直角三角形與相似三角形是解題的關(guān)鍵.4、B【解析】分析:利用二次函數(shù)的增減性求解即可,畫出圖形,可直接看出答案.詳解:對稱軸是:x=1,且開口向上,如圖所示,∴當(dāng)x<1時(shí),函數(shù)值y隨著x的增大而減?。还蔬xB.點(diǎn)睛:本題主要考查了二次函數(shù)的性質(zhì),解題的關(guān)鍵是熟記二次函數(shù)的性質(zhì).5、B【解析】試題解析:連接AC,如圖,∵AB為直徑,∴∠ACB=90°,∴∴故選B.點(diǎn)睛:在同圓或等圓中,同弧或等弧所對的圓周角相等.6、C【解析】分析:首先求出的值,然后根據(jù)立方根的計(jì)算法則得出答案.詳解:∵,,∴的立方根為-2,故選C.點(diǎn)睛:本題主要考查的是算術(shù)平方根與立方根,屬于基礎(chǔ)題型.理解算術(shù)平方根與立方根的含義是解決本題的關(guān)鍵.7、B【解析】試題解析:在菱形中,,,所以,,在中,,因?yàn)?,所以,則,在中,由勾股定理得,,由可得,,即,所以.故選B.8、B【解析】試題分析:根據(jù)網(wǎng)格結(jié)構(gòu),找出對應(yīng)點(diǎn)連線的垂直平分線的交點(diǎn)即為旋轉(zhuǎn)中心.試題解析:由圖形可知,對應(yīng)點(diǎn)的連線CC′、AA′的垂直平分線過點(diǎn)(0,-1),根據(jù)旋轉(zhuǎn)變換的性質(zhì),點(diǎn)(1,-1)即為旋轉(zhuǎn)中心.故旋轉(zhuǎn)中心坐標(biāo)是P(1,-1)故選B.考點(diǎn):坐標(biāo)與圖形變化—旋轉(zhuǎn).9、C【解析】如圖所示:過點(diǎn)O作OD⊥AB于點(diǎn)D,∵OB=3,AB=4,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD=.故選C.10、D【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值<1時(shí),n是負(fù)數(shù).【詳解】解:10700=1.07×104,
故選:D.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1﹣1或﹣1【解析】
直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時(shí),直線y=kx+4與y=|x1-x-1|的圖象恰好有三個(gè)公共點(diǎn),即-x1+x+1=kx+4有相等的實(shí)數(shù)解,利用根的判別式的意義可求出此時(shí)k的值,另外當(dāng)y=kx+4過(1,0)時(shí),也滿足條件.【詳解】解:當(dāng)y=0時(shí),x1-x-1=0,解得x1=-1,x1=1,
則拋物線y=x1-x-1與x軸的交點(diǎn)為(-1,0),(1,0),
把拋物線y=x1-x-1圖象x軸下方的部分沿x軸翻折到x軸上方,
則翻折部分的拋物線解析式為y=-x1+x+1(-1≤x≤1),
當(dāng)直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時(shí),
直線y=kx+4與函數(shù)y=|x1-x-1|的圖象恰好有三個(gè)公共點(diǎn),
即-x1+x+1=kx+4有相等的實(shí)數(shù)解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,
解得k=1±1,
所以k的值為1+1或1-1.
當(dāng)k=1+1時(shí),經(jīng)檢驗(yàn),切點(diǎn)橫坐標(biāo)為x=-<-1不符合題意,舍去.
當(dāng)y=kx+4過(1,0)時(shí),k=-1,也滿足條件,故答案為1-1或-1.【點(diǎn)睛】本題考查了二次函數(shù)與幾何變換:翻折變化不改變圖形的大小,故|a|不變,利用頂點(diǎn)式即可求得翻折后的二次函數(shù)解析式;也可利用絕對值的意義,直接寫出自變量在-1≤x≤1上時(shí)的解析式。12、1【解析】
根據(jù)DE∥BC,得到,再代入AC=11-AE,則可求AE長.【詳解】∵DE∥BC,∴.∵,CE=11,∴,解得AE=1.故答案為1.【點(diǎn)睛】本題主要考查相似三角形的判定和性質(zhì),正確寫出比例式是解題的關(guān)鍵.13、2.【解析】
先求出點(diǎn)A的坐標(biāo),根據(jù)點(diǎn)的坐標(biāo)的定義得到OC=3,AC=2,再根據(jù)線段垂直平分線的性質(zhì)可知AB=OB,由此推出△ABC的周長=OC+AC.【詳解】由點(diǎn)A(3,n)在雙曲線y=上得,n=2.∴A(3,2).∵線段OA的垂直平分線交OC于點(diǎn)B,∴OB=AB.則在△ABC中,AC=2,AB+BC=OB+BC=OC=3,∴△ABC周長的值是2.14、【解析】分析:由題意可知,從,0,π,3.14,6這五個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),共有5種等可能結(jié)果,其中是有理數(shù)的有3種,由此即可得到所求概率了.詳解:∵從,0,π,3.14,6這五個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),共有5種等可能結(jié)果,其中有理數(shù)有0,3.14,6共3個(gè),∴抽到有理數(shù)的概率是:.故答案為.點(diǎn)睛:知道“從,0,π,3.14,6這五個(gè)數(shù)中隨機(jī)抽取一個(gè)數(shù),共有5種等可能結(jié)果”并能識別其中“0,3.14,6”是有理數(shù)是解答本題的關(guān)鍵.15、2【解析】
將數(shù)據(jù)排序后,位置在最中間的數(shù)值。即將數(shù)據(jù)分成兩部分,一部分大于該數(shù)值,一部分小于該數(shù)值。中位數(shù)的位置:當(dāng)樣本數(shù)為奇數(shù)時(shí),中位數(shù)=(N+1)/2;當(dāng)樣本數(shù)為偶數(shù)時(shí),中位數(shù)為N/2與1+N/2的均值;眾數(shù)是在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)。根據(jù)定義即可算出.【詳解】2、1、5、1、8中只有1出現(xiàn)兩次,其余都是1次,得眾數(shù)為a=1.2、1、5、1、8重新排列2、1、1、5、8,中間的數(shù)是1,中位數(shù)b=1.∴a﹣b=1-1=2.故答案為:2.【點(diǎn)睛】中位數(shù)與眾數(shù)的定義.16、(a+1)(a-1)【解析】
根據(jù)平方差公式分解即可.【詳解】(a+1)(a-1).故答案為:(a+1)(a-1).【點(diǎn)睛】本題考查了因式分解,把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個(gè)因式都不能再分解為止.三、解答題(共8題,共72分)17、(1)y=4x,y=﹣x+5;(2)0<x<1或x>4;(3)P的坐標(biāo)為(【解析】
(1)把A(1,4)代入y=mx,求出m=4,把B(4,n)代入y=4(2)根據(jù)圖像解答即可;(3)作B關(guān)于x軸的對稱點(diǎn)B′,連接AB′,交x軸于P,此時(shí)PA+PB=AB′最小,然后用待定系數(shù)法求出直線AB′的解析式即可.【詳解】解:(1)把A(1,4)代入y=mx∴反比例函數(shù)的解析式為y=4x把B(4,n)代入y=4x∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:k+b=44k+b=1解得:k=-1∴一次函數(shù)的解析式為y=﹣x+5;(2)根據(jù)圖象得當(dāng)0<x<1或x>4,一次函數(shù)y=﹣x+5的圖象在反比例函數(shù)y=4x∴當(dāng)x>0時(shí),kx+b<mx(3)如圖,作B關(guān)于x軸的對稱點(diǎn)B′,連接AB′,交x軸于P,此時(shí)PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),設(shè)直線AB′的解析式為y=px+q,∴p+q=44p+q=-1解得p=-5∴直線AB′的解析式為y=-5令y=0,得-5解得x=175∴點(diǎn)P的坐標(biāo)為(175【點(diǎn)睛】本題考查了待定系數(shù)法求反比例函數(shù)及一次函數(shù)解析式,利用圖像解不等式,軸對稱最短等知識.熟練掌握待定系數(shù)法是解(1)的關(guān)鍵,正確識圖是解(2)的關(guān)鍵,根據(jù)軸對稱的性質(zhì)確定出點(diǎn)P的位置是解答(3)的關(guān)鍵.18、(1)2;(2);(3)見解析.【解析】分析:(1)根據(jù)解析式求得C的坐標(biāo),進(jìn)而求得D的坐標(biāo),即可求得DH的長度,令y=0,求得A,B的坐標(biāo),然后證得△ACO∽△EAH,根據(jù)對應(yīng)邊成比例求得EH的長,進(jìn)繼而求得DE的長;(2)找點(diǎn)C關(guān)于DE的對稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對稱點(diǎn)G(-2,-),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時(shí),△CPF周長=CF+PF+CP=GF+PF+PN最小,根據(jù)點(diǎn)的坐標(biāo)求得直線GN的解析式:y=x-;直線AE的解析式:y=-x-,過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,-m2+m+),則Q(m,m-),根據(jù)S△MFP=S△MQF+S△MQP,得出S△MFP=-m2+m+,根據(jù)解析式即可求得,△MPF面積的最大值;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),求得CF=,CP=,進(jìn)而得出△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,然后分三種情況討論求得即可.本題解析:(1)對于拋物線y=﹣x2+x+,令x=0,得y=,即C(0,),D(2,),∴DH=,令y=0,即﹣x2+x+=0,得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),∵AE⊥AC,EH⊥AH,∴△ACO∽△EAH,∴=,即=,解得:EH=,則DE=2;(2)找點(diǎn)C關(guān)于DE的對稱點(diǎn)N(4,),找點(diǎn)C關(guān)于AE的對稱點(diǎn)G(﹣2,﹣),連接GN,交AE于點(diǎn)F,交DE于點(diǎn)P,即G、F、P、N四點(diǎn)共線時(shí),△CPF周長=CF+PF+CP=GF+PF+PN最小,直線GN的解析式:y=x﹣;直線AE的解析式:y=﹣x﹣,聯(lián)立得:F(0,﹣),P(2,),過點(diǎn)M作y軸的平行線交FH于點(diǎn)Q,設(shè)點(diǎn)M(m,﹣m2+m+),則Q(m,m﹣),(0<m<2);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=﹣m2+m+,∵對稱軸為:直線m=<2,開口向下,∴m=時(shí),△MPF面積有最大值:;(3)由(2)可知C(0,),F(xiàn)(0,),P(2,),∴CF=,CP==,∵OC=,OA=1,∴∠OCA=30°,∵FC=FG,∴∠OCA=∠FGA=30°,∴∠CFP=60°,∴△CFP為等邊三角形,邊長為,翻折之后形成邊長為的菱形C′F′P′F″,且F′F″=4,1)當(dāng)KF′=KF″時(shí),如圖3,點(diǎn)K在F′F″的垂直平分線上,所以K與B重合,坐標(biāo)為(3,0),∴OK=3;2)當(dāng)F′F″=F′K時(shí),如圖4,∴F′F″=F′K=4,∵FP的解析式為:y=x﹣,∴在平移過程中,F(xiàn)′K與x軸的夾角為30°,∵∠OAF=30°,∴F′K=F′A∴AK=4∴OK=4﹣1或者4+1;3)當(dāng)F″F′=F″K時(shí),如圖5,∵在平移過程中,F(xiàn)″F′始終與x軸夾角為60°,∵∠OAF=30°,∴∠AF′F″=90°,∵F″F′=F″K=4,∴AF″=8,∴AK=12,∴OK=1,綜上所述:OK=3,4﹣1,4+1或者1.點(diǎn)睛:本題是二次函數(shù)的綜合題,考查了二次函數(shù)的交點(diǎn)和待定系數(shù)法求二次函數(shù)的解析式以及最值問題,考查了三角形相似的判定與性質(zhì),等邊三角形的判定與性質(zhì),等腰三角形的性質(zhì)等,分類討論的思想是解題的關(guān)鍵.19、開口方向:向上;點(diǎn)坐標(biāo):(-1,-3);稱軸:直線.【解析】
將二次函數(shù)一般式化為頂點(diǎn)式,再根據(jù)a的值即可確定該函數(shù)圖像的開口方向、頂點(diǎn)坐標(biāo)和對稱軸.【詳解】解:,,,∴開口方向:向上,頂點(diǎn)坐標(biāo):(-1,-3),對稱軸:直線.【點(diǎn)睛】熟練掌握將一般式化為頂點(diǎn)式是解題關(guān)鍵.20、(1)y=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時(shí),當(dāng)點(diǎn)D運(yùn)動到AB中點(diǎn)位置時(shí)四邊形CDBF為正方形.【解析】分析:(1)根據(jù)平移的性質(zhì)得到DF∥AC,所以由平行線的性質(zhì)、勾股定理求得GD=,BG==,所以由三角形的面積公式列出函數(shù)關(guān)系式;(2)不能為正方形,添加條件:AC=BC時(shí),點(diǎn)D運(yùn)動到AB中點(diǎn)時(shí),四邊形CDBF為正方形;當(dāng)D運(yùn)動到AB中點(diǎn)時(shí),四邊形CDBF是菱形,根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,則CD=BD=BF=CF,故四邊形CDBF是菱形,根據(jù)有一內(nèi)角為直角的菱形是正方形來添加條件.詳解:(1)如圖(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時(shí),當(dāng)點(diǎn)D運(yùn)動到AB中點(diǎn)位置時(shí)四邊形CDBF為正方形.∵∠ACB=∠DFE=90°,D是AB的中點(diǎn)∴CD=AB,BF=DE,∴CD=BD=BF=BE,∵CF=BD,∴CD=BD=BF=CF,∴四邊形CDBF是菱形;∵AC=BC,D是AB的中點(diǎn).∴CD⊥AB即∠CDB=90°∵四邊形CDBF為菱形,∴四邊形CDBF是正方形.點(diǎn)睛:本題是幾何變換綜合題型,主要考查了平移變換的性質(zhì),勾股定理,正方形的判定,菱形的判定與性質(zhì)以及直角三角形斜邊上的中線.(2)難度稍大,根據(jù)三角形斜邊上的中線推知CD=BD=BF=BE是解題的關(guān)鍵.21、(1)證明見解析;(2).【解析】試題分析:利用矩形角相等的性質(zhì)證明△DAE∽△AMB.試題解析:(1)證明:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M(jìn)是邊BC的中點(diǎn),BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=.22、(1)y=-x2+2x+2;(2)詳見解析;(3)點(diǎn)P的坐標(biāo)為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【解析】
(1)根據(jù)題意得出方程組,求出b、c的值,即可求出答案;(2)求出B、C的坐標(biāo),根據(jù)點(diǎn)的坐標(biāo)求出AB、BC、AC的值,根據(jù)勾股定理的逆定理求出即可;(3)分為兩種情況,畫出圖形,根據(jù)相似三角形的判定和性質(zhì)求出PE的長,即可得出答案.【詳解】解:(1)由題意得:,解得:,∴拋物線的解析式為y=-x2+2x+2;(2)∵由y=-x2+2x+2得:當(dāng)x=0時(shí),y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB=3,BC=,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如圖,當(dāng)點(diǎn)Q在線段AP上時(shí),過點(diǎn)P作PE⊥x軸于點(diǎn)E,AD⊥x軸于點(diǎn)D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴==1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(1+,1)或(1-,1),②如圖,當(dāng)點(diǎn)Q在PA延長線上時(shí),過點(diǎn)P作PE⊥x軸于點(diǎn)E,AD⊥x軸于點(diǎn)D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴==3,∴PE=3AD=3∵由-x2+2x+2=-3得:x=1±,∴P(1+,-3),或(1-,-3),綜上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 餐飲合作經(jīng)營化協(xié)議2024年
- 2024年示范協(xié)議格式精簡
- 測繪服務(wù)2024年土地項(xiàng)目協(xié)議
- 博士項(xiàng)目2024教職人員聘請協(xié)議
- 2024年金融理財(cái)顧問服務(wù)協(xié)議樣本
- 煙囪工程合同范本
- 2024年度個(gè)人用車租賃協(xié)議樣本
- 膩?zhàn)泳S修合同范本
- 車位買賣規(guī)范協(xié)議2024年
- 化物業(yè)承包服務(wù)協(xié)議指南2024
- 校企共建項(xiàng)目合同違約條款
- GB/T 16716.5-2024包裝與環(huán)境第5部分:能量回收
- 中小學(xué)教師如何做課題研究設(shè)計(jì)課件
- 《1.6.1 余弦定理》說課稿
- 急診醫(yī)學(xué)測試試題及答案
- 2024年消防月全員消防安全知識專題培訓(xùn)-附20起典型火災(zāi)案例
- 恒牙臨床解剖-上頜中切牙(牙體解剖學(xué)課件)
- 戲劇鑒賞學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- NBT 31021-2012風(fēng)力發(fā)電企業(yè)科技文件規(guī)檔規(guī)范
- 2024年國家公務(wù)員考試行測真題及解析(完整版)
- 《縣委書記的榜樣-焦裕祿》課件
評論
0/150
提交評論