版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
PAGEPAGE7平面【課時目標】掌握文字、符號、圖形語言之間的轉化,理解公理1、公理2、公理3,并能運用它們解決點共線、線共面、線共點等問題.1.公理1:如果一條直線上的________在一個平面內(nèi),那么________________在此平面內(nèi).符號:________________________________.2.公理2:過________________________________的三點,________________一個平面.3.公理3:如果兩個不重合的平面有________公共點,那么它們有且只有________過該點的公共直線.符號:________________________________.4.用符號語言表示下列語句:(1)點A在平面α內(nèi)但在平面β外:______________.(2)直線l經(jīng)過面α內(nèi)一點A,α外一點B:________________________.(3)直線l在面α內(nèi)也在面β內(nèi):____________.(4)平面α內(nèi)的兩條直線M、n相交于A:________________________.一、選擇題1.下列命題:①書桌面是平面;②8個平面重疊起來,要比6個平面重疊起來厚;③有一個平面的長是50M,寬是20M;④平面是絕對的平、無厚度,可以無限延展的抽象數(shù)學概念.其中正確命題的個數(shù)為()A.1B.2C.32.若點M在直線b上,b在平面β內(nèi),則M、b、β之間的關系可記作()A.M∈b∈βB.M∈b?βC.M?b?βD.M?b∈β3.已知平面α與平面β、γ都相交,則這三個平面可能的交線有()A.1條或2條B.2條或3條C.1條或3條D.1條或2條或3條4.已知α、β為平面,A、B、M、N為點,a為直線,下列推理錯誤的是()A.A∈a,A∈β,B∈a,B∈β?a?βB.M∈α,M∈β,N∈α,N∈β?α∩β=MNC.A∈α,A∈β?α∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共線?α、β重合5.空間中可以確定一個平面的條件是()A.兩條直線B.一點和一直線C.一個三角形D.三個點6.空間有四個點,如果其中任意三個點不共線,則經(jīng)過其中三個點的平面有()A.2個或3個B.4個或3個C.1個或3個D.1個或4個二、填空題7.把下列符號敘述所對應的圖形(如圖)的序號填在題后橫線上.(1)Aα,a?α________.(2)α∩β=a,PD/∈α且Pβ________.(3)a?α,a∩α=A________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.8.已知α∩β=M,a?α,b?β,a∩b=A,則直線M與A的位置關系用集合符號表示為________.9.下列四個命題:①兩個相交平面有不在同一直線上的三個公共點;②經(jīng)過空間任意三點有且只有一個平面;③過兩平行直線有且只有一個平面;④在空間兩兩相交的三條直線必共面.其中正確命題的序號是________.三、解答題10.如圖,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一點,畫出平面SBD和平面SAC的交線,并說明理由.11.如圖所示,四邊形ABCD中,已知AB∥CD,AB,BC,DC,AD(或延長線)分別與平面α相交于E,F(xiàn),G,H,求證:E,F(xiàn),G,H必在同一直線上.能力提升12.空間中三個平面兩兩相交于三條直線,這三條直線兩兩不平行,證明此三條直線必相交于一點.13.如圖,在正方體ABCD-A1B1C1D1中,對角線A1C與平面BDC1交于點O,AC、BD交于點M,E為AB的中點,F(xiàn)為AA求證:(1)C1、O、M三點共線;(2)E、C、D1、F四點共面;(3)CE、D1F1.證明幾點共線的方法:先考慮兩個平面的交線,再證有關的點都是這兩個平面的公共點.或先由某兩點作一直線,再證明其他點也在這條直線上.2.證明點線共面的方法:先由有關元素確定一個基本平面,再證其他的點(或線)在這個平面內(nèi);或先由部分點線確定平面,再由其他點線確定平面,然后證明這些平面重合.注意對諸如“兩平行直線確定一個平面”等依據(jù)的證明、記憶與運用.3.證明幾線共點的方法:先證兩線共點,再證這個點在其他直線上,而“其他”直線往往歸結為平面與平面的交線.第二章點、直線、平面之間的位置關系§2.1空間點、直線、平面之間的位置關系2.1.1平面答案知識梳理1.兩點這條直線A∈l,B∈l,且A∈α,B∈α?l?α2.不在一條直線上有且只有3.一個一條P∈α,且P∈β?α∩β=l,且P∈l4.(1)A∈α,A?β(2)A∈α,B?α且A∈l,B∈l(3)l?α且l?β(4)M?α,n?α且M∩n=A作業(yè)設計1.A[由平面的概念,它是平滑、無厚度、可無限延展的,可以判斷命題④正確,其余的命題都不符合平面的概念,所以命題①、②、③都不正確,故選A.]2.B3.D4.C[∵A∈α,A∈β,∴A∈α∩β.由公理可知α∩β為經(jīng)過A的一條直線而不是A.故α∩β=A的寫法錯誤.]5.C6.D[四點共面時有1個平面,四點不共面時有4個平面.]7.(1)C(2)D(3)A(4)B8.A∈M解析因為α∩β=M,A∈a?α,所以A∈α,同理A∈β,故A在α與β的交線M上.9.③10.解很明顯,點S是平面SBD和平面SAC的一個公共點,即點S在交線上,由于AB>CD,則分別延長AC和BD交于點E,如圖所示.∵E∈AC,AC?平面SAC,∴E∈平面SAC.同理,可證E∈平面SBD.∴點E在平面SBD和平面SAC的交線上,連接SE,直線SE是平面SBD和平面SAC的交線.11.證明因為AB∥CD,所以AB,CD確定平面AC,AD∩α=H,因為H∈平面AC,H∈α,由公理3可知,H必在平面AC與平面α的交線上.同理F、G、E都在平面AC與平面α的交線上,因此E,F(xiàn),G,H必在同一直線上.12.證明∵l1?β,l2?β,l1l2,∴l(xiāng)1∩l2交于一點,記交點為P.∵P∈l1?β,P∈l2?γ,∴P∈β∩γ=l3,∴l(xiāng)1,l2,l3交于一點.13.證明(1)∵C1、O、M∈平面BDC1,又C1、O、M∈平面A1ACC1,由公理3知,點C1、O、M在平面BDC1與平面A1ACC1的交線上,∴C1、O、M
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課件標題模板教學課件
- 南京工業(yè)大學浦江學院《食品添加劑》2022-2023學年第一學期期末試卷
- 都江堰某希望小學教學樓及綜合樓施工組織設計
- jqx第課時說課稿
- 南京工業(yè)大學浦江學院《金庸小說欣賞》2021-2022學年第一學期期末試卷
- 《小小旅行家》說課稿
- 南京工業(yè)大學《自動化》2022-2023學年第一學期期末試卷
- 南京工業(yè)大學《藥物商品學》2023-2024學年第一學期期末試卷
- 南京工業(yè)大學《水工程施工》2022-2023學年第一學期期末試卷
- 南京工業(yè)大學《企業(yè)戰(zhàn)略管理》2022-2023學年第一學期期末試卷
- 黑龍江省哈爾濱市八年級上學期物理期中測試試卷四套含答案
- 一年級上冊數(shù)學《認識鐘表》教學課件-A3演示文稿設計與制作【微能力認證優(yōu)秀作業(yè)】
- 五年級上冊閱讀理解20篇(附帶答案解析)經(jīng)典1
- 2023年國家電投校園招聘筆試題庫及答案解析
- GB/T 28035-2011軟件系統(tǒng)驗收規(guī)范
- 《經(jīng)濟學基礎》試題庫(附答案)
- 學前教育論文范文8000字(通用九篇)
- 小學數(shù)學北師大五年級上冊數(shù)學好玩 圖形中的規(guī)律-
- 《富饒的西沙群島》說課稿(優(yōu)秀3篇)
- 墓碑碑文范文(通用十四篇)
- 大象版一年級科學上冊全冊教案
評論
0/150
提交評論