圓中三大切線定理_第1頁(yè)
圓中三大切線定理_第2頁(yè)
圓中三大切線定理_第3頁(yè)
圓中三大切線定理_第4頁(yè)
圓中三大切線定理_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2圓中三大切線定理滿分晉級(jí)階梯圓5級(jí)圓中三大切線定理圓6級(jí)期末復(fù)習(xí)之圓的綜合圓7級(jí)期末復(fù)習(xí)之圓中的重要結(jié)論及應(yīng)用漫畫釋義圍田地

秋季班第二講秋季班第八講秋季班第十三講秋季班第六講暑期班第六講秋季班第十五講初三秋季·第 2講·尖子班·學(xué)生版14中考內(nèi)容與要求中考內(nèi)容中考要求ABC會(huì)過(guò)不在同一直線上的三圓的有關(guān)概念理解圓及其有關(guān)概念點(diǎn)作圓;能利用圓的有關(guān)概念解決簡(jiǎn)單問(wèn)題能運(yùn)用圓圓的性質(zhì)知道圓的對(duì)稱性,了解弧、弦、能用弧、弦、圓心角的關(guān)的性質(zhì)解圓心角的關(guān)系系解決簡(jiǎn)單問(wèn)題決有關(guān)問(wèn)題能綜合運(yùn)了解圓周角與圓心角的關(guān)系;會(huì)求圓周角的度數(shù),能用用幾何知圓周角圓周角的知識(shí)解決與角有識(shí)解決與知道直徑所對(duì)的圓周角是直角關(guān)的簡(jiǎn)單問(wèn)題圓周角有關(guān)的問(wèn)題垂徑定理會(huì)在相應(yīng)的圖形中確定垂徑定能用垂徑定理解決有關(guān)問(wèn)理的條件和結(jié)論題點(diǎn)與圓的位置關(guān)系了解點(diǎn)與圓的位置關(guān)系了解直線與圓的位置關(guān)系;了能判定直線和圓的位置關(guān)直線與圓的位置關(guān)解切線的概念,理解切線與過(guò)系;會(huì)根據(jù)切線長(zhǎng)的知識(shí)能解決與切點(diǎn)的半徑之間的關(guān)系;會(huì)過(guò)解決簡(jiǎn)單的問(wèn)題;能利用切線有關(guān)系圓上一點(diǎn)畫圓的切線;了解切直線和圓的位置關(guān)系解決的問(wèn)題線長(zhǎng)的概念簡(jiǎn)單問(wèn)題圓與圓的位置關(guān)系了解圓與圓的位置關(guān)系能利用圓與圓的位置關(guān)系解決簡(jiǎn)單問(wèn)題弧長(zhǎng)會(huì)計(jì)算弧長(zhǎng)能利用弧長(zhǎng)解決有關(guān)問(wèn)題扇形會(huì)計(jì)算扇形面積能利用扇形面積解決有關(guān)問(wèn)題圓錐的側(cè)面積和全會(huì)求圓錐的側(cè)面積和全面積能解決與圓錐有關(guān)的簡(jiǎn)單面積實(shí)際問(wèn)題中考考點(diǎn)分析圓是北京中考的必考內(nèi)容,主要考查圓的有關(guān)性質(zhì)與圓的有關(guān)計(jì)算,每年的第 20題都會(huì)考15查,第1小題一般是切線的證明,第2小題運(yùn)用圓與三角形相似、解直角三角形等知識(shí)求線段長(zhǎng)度問(wèn)題,有時(shí)也以閱讀理解、條件開(kāi)放、結(jié)論開(kāi)放探索題作為新的題型。要求同學(xué)們重點(diǎn)掌握?qǐng)A的有關(guān)性質(zhì),掌握求線段、角的方法,理解概念之間的相互聯(lián)系和知識(shí)之間的相互轉(zhuǎn)化,理解直線和圓的三種位置關(guān)系,掌握切線的性質(zhì)和判定方法,會(huì)根據(jù)條件解決圓中的動(dòng)態(tài)問(wèn)題。年份2011年題號(hào)20,25分值13分圓的有關(guān)證明,計(jì)算(圓周角定理、考點(diǎn)切線、等腰三角形、相似、解直角三角形);直線與圓的位置關(guān)系

2012年8,20,25分圓的基本性質(zhì),圓的切線證明,圓同相似和三角函數(shù)的結(jié)合;直線與圓的位置關(guān)系

2013年8,20,25分圓中的動(dòng)點(diǎn)函數(shù)圖像,圓的基本性質(zhì)(垂徑定理、圓周角定理),圓同相似和三角函數(shù)的結(jié)合;直線與圓的位置關(guān)系知識(shí)互聯(lián)網(wǎng)題型一:切線的性質(zhì)定理初三秋季·第 2講·尖子班·學(xué)生版16思路導(dǎo)航題目中已知圓的切線,可以“連半徑,標(biāo)直角”,然后在直角三角形中利用勾股、相似或銳角三角函數(shù)解決問(wèn)題。典題精練【例1】如圖,在△ABC中,ABBC,以AC為直徑的⊙0與BC邊交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線DE,交AB于點(diǎn)E,若DE⊥AB.求證:AE3BE.

AOEB D C題型二:切線的判定定理思路導(dǎo)航判定切線共有三種方法:定義法、距離法和定理法,其中常用的是距離法和定理法,可以總結(jié)為六字口訣,定理法是“連半徑,證垂直”,距離法是“作垂直,證半徑”,定理法的使用頻率最高,必須熟練掌握。典題精練【例2】如圖,C是以AB為直徑的⊙O上一點(diǎn),過(guò)O作OE⊥AC于點(diǎn)E,過(guò)點(diǎn)A作⊙O的切線交OE的延長(zhǎng)線于點(diǎn)F,17連結(jié)CF并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn) P.⑴求證:PC是⊙O的切線.⑵若AB=4,AP:PC 1:2,求CF的長(zhǎng).【例3】如圖,已知Rt△ABC中,ACB90,BD平分ABC,以CDD為圓心、CD長(zhǎng)為半徑作⊙D,與AC的另一個(gè)交點(diǎn)為E.⑴求證:AB與⊙D相切;E⑵若AC4,BC3,求AE的長(zhǎng).AB【例4】已知:如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),OD⊥BC于點(diǎn)D,過(guò)點(diǎn)C作⊙O的切線,交OD的延長(zhǎng)線于點(diǎn)E,連結(jié)BE.求證:BE與⊙O相切;⑵連結(jié)AD并延長(zhǎng)交BE于點(diǎn)F,OB 9,sin ABC 2,3求BF的長(zhǎng).初三秋季·第 2講·尖子班·學(xué)生版18題型三 切線長(zhǎng)定理思路導(dǎo)航切線長(zhǎng)和切線長(zhǎng)定理:⑴在經(jīng)過(guò)圓外一點(diǎn)的圓的切線上,這點(diǎn)和切點(diǎn)之間的線段的長(zhǎng),叫做這點(diǎn)到圓的切線長(zhǎng).⑵從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角.例題精講【引例】已知:如圖,PA、PB分別與⊙O相切于A、B兩點(diǎn).求證:⑴⑵PAPB;⑶OP垂直平分線段AB.【解析】連結(jié)OA,OB A∵PA,PB分別與⊙O相切,PC O

APO BPO;APC OB B19∴PA OA,PB OB,∵OA OB,OP=OP∴△AOP≌△BOP∴APOBPO.∴PB,PA由等腰三角形“三線合一”可知:OPAB且ACBC,∴垂直平分線段AB.OP(整套資料加群下載: 全國(guó)初中數(shù)學(xué)教師群 881627464)典題精練【例5】⑴如圖,PA、PB、DE分別切⊙O于A、B、C,若PO10,△PDE周長(zhǎng)為16,求⊙O的半徑.⑵梯形ABCD中,AB∥CD,O是AB上一點(diǎn),以 O為圓心的半圓與AD、CD、BC都相切.已知 AD 6,BC 4,求AB的長(zhǎng).

ADP OCEBD CA BO初三秋季·第 2講·尖子班·學(xué)生版20CE【例6】⑴如右圖所示, △ABC的內(nèi)切圓與三邊 AB、BC、CA分別切于D、E、F.AB 13cm,BC 14cm,CA 11cm,求AD、BE、CF的長(zhǎng).

FA D B⑵如圖,在RtABC中,C90,AC6,BC8,圓O為CABC的內(nèi)切圓,點(diǎn)D是斜邊AB的中點(diǎn),則tanODA.OBDA【例7】已知:AB是半圓O的直徑,點(diǎn)C在BA的延長(zhǎng)線上運(yùn)動(dòng)(點(diǎn)C與點(diǎn)A不重合),以O(shè)C為直徑的半圓M與半圓O交于點(diǎn)D,DCB的平分線與半圓M交于點(diǎn)E.求證:CD是半圓O的切線(圖1);(2)作EF AB于點(diǎn)F(圖2),猜想EF與已有的哪條線段的一半相等,并加以證明 .D DEEB C A M F O BC M A O圖2圖121思維拓展訓(xùn)練(選講)訓(xùn)練1.如圖,AB是半圓的直徑,直線MN切半圓于C,MCAMMN,BNMN,如果AMa,BNb,那么半圓的半徑是N_____________.ABO訓(xùn)練2.如圖所示,△ABC中,內(nèi)切⊙O和邊BC,CA,AB分別相切于點(diǎn)D,E,F(xiàn).若FDE70,求A的度數(shù).AEFOCDB訓(xùn)練3. 如圖,⊙O1和⊙O2為Rt△ABC的內(nèi)切等圓, C 90,AC 4,BC 3,求⊙O1的半徑r.CO1 O2B A初三秋季·第 2講·尖子班·學(xué)生版22訓(xùn)練4.已知,如圖在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A長(zhǎng)為半徑的圓O與AD、AC分別交于點(diǎn)E、F,ACBDCE.DC⑴判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;⑵若tanACB2,BC2,求⊙O的半徑.2EFOAB復(fù)習(xí)鞏固題型一切線的性質(zhì)定理鞏固練習(xí)B【練習(xí)1】如圖,AB與⊙O相切于點(diǎn)B,線段OA與弦BC垂直于點(diǎn)D,AOB60,BC4cm,則切線ABcm.ODAC題型二切線的判定定理鞏固練習(xí)【練習(xí)2】在平行四邊形ABCD中,AB10,ADm,D60,以AB為直徑作⊙O,⑴求圓心O到CD的距離(用含m的代數(shù)式來(lái)表示);A⑵當(dāng)m取何值時(shí),CD與⊙O相切.DOCB【練習(xí)3】已知:如圖,由正方形ABCD的頂點(diǎn)A引一條直線分別交BD、ADEF23OBCGCD及BC的延長(zhǎng)線于點(diǎn) E、F、G,求證:CE和△CGF的外接圓相切.【練習(xí)4】如圖,AB是⊙O的直徑, BC AB于點(diǎn)B,連接OC弦DFA于B點(diǎn)G.求證:點(diǎn)E是BD的中點(diǎn);⑵求證:CD是⊙O的切線;⑶若sinBAD4,⊙O的半徑為5,求DF的長(zhǎng).5

交⊙O于點(diǎn)E,弦AD∥OC,DCEAOBGF題型三切線長(zhǎng)定理鞏固練習(xí)A【練習(xí)5】⑴如圖,⊙O是△ABC的內(nèi)切圓,D、E、F是切點(diǎn),AB18cm,F(xiàn)EMBC20cm,AC12cm,又直線MN切⊙O于G,交AB、BCGO于M、N,則△BMN的周長(zhǎng)為_(kāi)_____________.CBDN⑵Rt△ABC中,C90,AC6,BC8,則△ABC的內(nèi)切圓半徑r________.⑶等腰梯形ABCD外切于圓,且中位線MN的長(zhǎng)為10,那么這個(gè)等腰梯形的周長(zhǎng)是_____.初三秋季·第 2講·尖子班·學(xué)生版24第十七種品格:成就巴雷尼與諾貝爾獎(jiǎng)巴雷尼小時(shí)候因病成了殘疾,母親的心就像刀絞一樣,但她還是強(qiáng)忍住自己的悲痛。她想,孩子現(xiàn)在最需要的是鼓勵(lì)和幫助,而不是媽媽的眼淚。母親來(lái)到巴雷尼的病床前,拉著他的手說(shuō): “孩子,媽媽相信你是個(gè)有志氣的人,希望你能用自己的雙腿,在人生的道路上勇敢地走下去!好巴雷尼,你能夠答應(yīng)媽媽嗎?”母親的話,像鐵錘一樣撞擊著巴雷尼的心扉,他“哇”地一聲,撲到母親懷里大哭起來(lái)。從那以后,媽媽只要一有空,就給巴雷尼練習(xí)走路,做體操,常常累得滿頭大汗。有一次媽媽得了重感冒,她想,做母親的不僅要言傳,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論