2022年湖北省黃岡市羅田縣第一中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第1頁
2022年湖北省黃岡市羅田縣第一中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第2頁
2022年湖北省黃岡市羅田縣第一中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第3頁
2022年湖北省黃岡市羅田縣第一中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第4頁
2022年湖北省黃岡市羅田縣第一中學(xué)高三下學(xué)期聯(lián)合考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一個(gè)圓錐的底面和一個(gè)半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個(gè)圓錐軸截面底角的大小是()A. B. C. D.2.在中,“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件3.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.44.若的展開式中的系數(shù)之和為,則實(shí)數(shù)的值為()A. B. C. D.15.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.6.棱長為2的正方體內(nèi)有一個(gè)內(nèi)切球,過正方體中兩條異面直線,的中點(diǎn)作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.17.已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),,則,,的大小關(guān)系為()A. B. C. D.8.命題:的否定為A. B.C. D.9.在中,點(diǎn)D是線段BC上任意一點(diǎn),,,則()A. B.-2 C. D.210.已知函數(shù),則()A.2 B.3 C.4 D.511.設(shè)為非零實(shí)數(shù),且,則()A. B. C. D.12.曲線上任意一點(diǎn)處的切線斜率的最小值為()A.3 B.2 C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)為,斜率為2的直線與的交點(diǎn)為,若,則直線的方程為___________.14.如圖,直三棱柱中,,,,P是的中點(diǎn),則三棱錐的體積為________.15.若滿足約束條件,則的最大值為__________.16.《九章算術(shù)》中,將四個(gè)面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過點(diǎn)分別作于點(diǎn),于點(diǎn),連接,則三棱錐的體積的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù).).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線與直線其中的一個(gè)交點(diǎn)為,且點(diǎn)極徑.極角(1)求曲線的極坐標(biāo)方程與點(diǎn)的極坐標(biāo);(2)已知直線的直角坐標(biāo)方程為,直線與曲線相交于點(diǎn)(異于原點(diǎn)),求的面積.18.(12分)已知數(shù)列滿足,,數(shù)列滿足.(Ⅰ)求證數(shù)列是等比數(shù)列;(Ⅱ)求數(shù)列的前項(xiàng)和.19.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.20.(12分)已知橢圓,上、下頂點(diǎn)分別是、,上、下焦點(diǎn)分別是、,焦距為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動(dòng)點(diǎn),過作與軸平行的直線,直線與交于點(diǎn),直線與直線交于點(diǎn),判斷是否為定值,說明理由.21.(12分)已知,求的最小值.22.(10分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點(diǎn)..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】

設(shè)圓錐的母線長為l,底面半徑為R,再表達(dá)圓錐表面積與球的表面積公式,進(jìn)而求得即可得圓錐軸截面底角的大小.【詳解】設(shè)圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點(diǎn)睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎(chǔ)題.2.C【解析】

由余弦函數(shù)的單調(diào)性找出的等價(jià)條件為,再利用大角對大邊,結(jié)合正弦定理可判斷出“”是“”的充分必要條件.【詳解】余弦函數(shù)在區(qū)間上單調(diào)遞減,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要條件.故選:C.【點(diǎn)睛】本題考查充分必要條件的判定,同時(shí)也考查了余弦函數(shù)的單調(diào)性、大角對大邊以及正弦定理的應(yīng)用,考查推理能力,屬于中等題.3.C【解析】

首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,由柱體、椎體的體積公式進(jìn)一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,如圖所示:故:.故選:C.【點(diǎn)睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.4.B【解析】

由,進(jìn)而分別求出展開式中的系數(shù)及展開式中的系數(shù),令二者之和等于,可求出實(shí)數(shù)的值.【詳解】由,則展開式中的系數(shù)為,展開式中的系數(shù)為,二者的系數(shù)之和為,得.故選:B.【點(diǎn)睛】本題考查二項(xiàng)式定理的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.5.B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.6.C【解析】

連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點(diǎn),取MN的中點(diǎn)H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點(diǎn)睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.7.C【解析】

根據(jù)函數(shù)的奇偶性得,再比較的大小,根據(jù)函數(shù)的單調(diào)性可得選項(xiàng).【詳解】依題意得,,當(dāng)時(shí),,因?yàn)?,所以在上單調(diào)遞增,又在上單調(diào)遞增,所以在上單調(diào)遞增,,即,故選:C.【點(diǎn)睛】本題考查函數(shù)的奇偶性的應(yīng)用、冪、指、對的大小比較,以及根據(jù)函數(shù)的單調(diào)性比較大小,屬于中檔題.8.C【解析】

命題為全稱命題,它的否定為特稱命題,將全稱量詞改為存在量詞,并將結(jié)論否定,可知命題的否定為,故選C.9.A【解析】

設(shè),用表示出,求出的值即可得出答案.【詳解】設(shè)由,,.故選:A【點(diǎn)睛】本題考查了向量加法、減法以及數(shù)乘運(yùn)算,需掌握向量加法的三角形法則以及向量減法的幾何意義,屬于基礎(chǔ)題.10.A【解析】

根據(jù)分段函數(shù)直接計(jì)算得到答案.【詳解】因?yàn)樗?故選:.【點(diǎn)睛】本題考查了分段函數(shù)計(jì)算,意在考查學(xué)生的計(jì)算能力.11.C【解析】

取,計(jì)算知錯(cuò)誤,根據(jù)不等式性質(zhì)知正確,得到答案.【詳解】,故,,故正確;取,計(jì)算知錯(cuò)誤;故選:.【點(diǎn)睛】本題考查了不等式性質(zhì),意在考查學(xué)生對于不等式性質(zhì)的靈活運(yùn)用.12.A【解析】

根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍柍闪ⅲ陨先我庖稽c(diǎn)處的切線斜率的最小值為3.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設(shè)直線l的方程為,,聯(lián)立直線l與拋物線C的方程,得到A,B點(diǎn)橫坐標(biāo)的關(guān)系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設(shè)直線.由題設(shè)得,故,由題設(shè)可得.

由可得,

則,從而,得,所以l的方程為,故答案為:【點(diǎn)睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質(zhì),直線與拋物線的位置關(guān)系,屬于中檔題.14.【解析】

證明平面,于是,利用三棱錐的體積公式即可求解.【詳解】平面,平面,,又.平面,是的中點(diǎn),.

故答案為:【點(diǎn)睛】本題考查了線面垂直的判定定理、三棱錐的體積公式,屬于基礎(chǔ)題.15.4【解析】

作出可行域如圖所示:由,解得.目標(biāo)函數(shù),即為,平移斜率為-1的直線,經(jīng)過點(diǎn)時(shí),.16.【解析】

由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當(dāng)AE=EF=2時(shí),△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.【詳解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,又PB⊥AE,則AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,結(jié)合條件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均為直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,當(dāng)且僅當(dāng)AE=EF=2時(shí),取“=”,此時(shí)△AEF的面積最大,三棱錐P﹣AEF的體積的最大值為:VP﹣AEF===.故答案為【點(diǎn)睛】本題主要考查直線與平面垂直的判定,基本不等式的應(yīng)用,同時(shí)考查了空間想象能力、計(jì)算能力和邏輯推理能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為(2)【解析】

(1)利用極坐標(biāo)方程、普通方程、參數(shù)方程間的互化公式即可;(2)只需算出A、B兩點(diǎn)的極坐標(biāo),利用計(jì)算即可.【詳解】(1)曲線C:(為參數(shù),),將代入,解得,即曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(2)由(1),得點(diǎn)的極坐標(biāo)為,由直線過原點(diǎn)且傾斜角為,知點(diǎn)的極坐標(biāo)為,.【點(diǎn)睛】本題考查極坐標(biāo)方程、普通方程、參數(shù)方程間的互化以及利用極徑求三角形面積,考查學(xué)生的運(yùn)算能力,是一道基礎(chǔ)題.18.(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)利用等比數(shù)列的定義結(jié)合得出數(shù)列是等比數(shù)列(Ⅱ)數(shù)列是“等比-等差”的類型,利用分組求和即可得出前項(xiàng)和.【詳解】解:(Ⅰ)當(dāng)時(shí),,故.當(dāng)時(shí),,則,,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.(Ⅱ)由(Ⅰ)得,,,.【點(diǎn)睛】(Ⅰ)證明數(shù)列是等比數(shù)列可利用定義法得出(Ⅱ)采用分組求和:把一個(gè)數(shù)列分成幾個(gè)可以直接求和的數(shù)列.19.(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個(gè)復(fù)合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計(jì)算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調(diào)性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值.也可以利用整體思想求函數(shù)在閉區(qū)間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),,,∴函數(shù)在閉區(qū)間上的最大值為,最小值為.考點(diǎn):1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數(shù)的周期性和單調(diào)性.20.(1);(2),理由見解析.【解析】

(1)求出橢圓的上、下焦點(diǎn)坐標(biāo),利用橢圓的定義求得的值,進(jìn)而可求得的值,由此可得出橢圓的方程;(2)設(shè)點(diǎn)的坐標(biāo)為,求出直線的方程,求出點(diǎn)的坐標(biāo),由此計(jì)算出直線和的斜率,可計(jì)算出的值,進(jìn)而可求得的值,即可得出結(jié)論.【詳解】(1)由題意可知,橢圓的上焦點(diǎn)為、,由橢圓的定義可得,可得,,因此,所求橢圓的方程為;(2)設(shè)點(diǎn)的坐標(biāo)為,則,得,直線的斜率為,所以,直線的方程為,聯(lián)立,解得,即點(diǎn),直線的斜率為,直線的斜率為,所以,,,因此,.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了橢圓中定值問題的求解,考查計(jì)算能力,屬于中等題.21.【解析】

討論和的情況,然后再分對稱軸和區(qū)間之間的關(guān)系,最后求出最小值【詳解】當(dāng)時(shí),,它在上是減函數(shù)故函數(shù)的最小值為當(dāng)時(shí),函數(shù)的圖象思維對稱軸方程為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為當(dāng)時(shí),,函數(shù)的最小值為綜上,【點(diǎn)睛】本題主要考查了二次函數(shù)在閉區(qū)間上的最值,二次函數(shù)的性質(zhì)的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題。22.(1)證明見解析;(2).【解析】

(1)證明,得到平面,得到證明.(2)以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,平面的一個(gè)法向

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論