四川省遂寧市二中2022年高考數(shù)學四模試卷含解析_第1頁
四川省遂寧市二中2022年高考數(shù)學四模試卷含解析_第2頁
四川省遂寧市二中2022年高考數(shù)學四模試卷含解析_第3頁
四川省遂寧市二中2022年高考數(shù)學四模試卷含解析_第4頁
四川省遂寧市二中2022年高考數(shù)學四模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.對于定義在上的函數(shù),若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對于,都有2.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加3.已知函數(shù),,其中為自然對數(shù)的底數(shù),若存在實數(shù),使成立,則實數(shù)的值為()A. B. C. D.4.“角谷猜想”的內容是:對于任意一個大于1的整數(shù),如果為偶數(shù)就除以2,如果是奇數(shù),就將其乘3再加1,執(zhí)行如圖所示的程序框圖,若輸入,則輸出的()A.6 B.7 C.8 D.95.設,集合,則()A. B. C. D.6.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.37.若向量,,則與共線的向量可以是()A. B. C. D.8.在中,內角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.169.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為()A. B. C. D.10.已知集合,則的值域為()A. B. C. D.11.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.12.下列函數(shù)中,在定義域上單調遞增,且值域為的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若x,y滿足,則的最小值為________.14.已知△ABC得三邊長成公比為2的等比數(shù)列,則其最大角的余弦值為_____.15.若的展開式中所有項的系數(shù)之和為,則______,含項的系數(shù)是______(用數(shù)字作答).16.若為假,則實數(shù)的取值范圍為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,點在橢圓上.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.18.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.19.(12分)為了檢測某種零件的一條生產線的生產過程,從生產線上隨機抽取一批零件,根據其尺寸的數(shù)據得到如圖所示的頻率分布直方圖,若尺寸落在區(qū)間之外,則認為該零件屬“不合格”的零件,其中,s分別為樣本平均數(shù)和樣本標準差,計算可得(同一組中的數(shù)據用該組區(qū)間的中點值作代表).(1)求樣本平均數(shù)的大??;(2)若一個零件的尺寸是100cm,試判斷該零件是否屬于“不合格”的零件.20.(12分)已知函數(shù).(1)當時,求函數(shù)的值域.(2)設函數(shù),若,且的最小值為,求實數(shù)的取值范圍.21.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標系.(1)求曲線的極坐標方程,并說明其表示什么軌跡;(2)若直線的極坐標方程為,求曲線上的點到直線的最大距離.22.(10分)設數(shù)列,其前項和,又單調遞增的等比數(shù)列,,.(Ⅰ)求數(shù)列,的通項公式;(Ⅱ)若,求數(shù)列的前n項和,并求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據函數(shù)對稱性和單調性的關系,進行判斷即可.【詳解】由得關于對稱,若關于對稱,則函數(shù)在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【點睛】本題主要考查函數(shù)性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.2.C【解析】

根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數(shù)據處理能力,屬于基礎題.3.A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數(shù),(﹣1,+∞)上是增函數(shù),故當x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當且僅當ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當且僅當?shù)忍柾瑫r成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.4.B【解析】

模擬程序運行,觀察變量值可得結論.【詳解】循環(huán)前,循環(huán)時:,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,不滿足條件;,滿足條件,退出循環(huán),輸出.故選:B.【點睛】本題考查程序框圖,考查循環(huán)結構,解題時可模擬程序運行,觀察變量值,從而得出結論.5.B【解析】

先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B【點睛】本題主要考查集合的化簡和運算,意在考查學生對這些知識的掌握水平和計算推理能力.6.C【解析】

連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數(shù)的問題,熟記向量的共線定理是關鍵.屬于基礎題.7.B【解析】

先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.8.C【解析】

根據正弦定理邊化角以及三角函數(shù)公式可得,再根據面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點睛】本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.9.B【解析】

分別取、的中點、,連接、、,利用二面角的定義轉化二面角的平面角為,然后分別過點作平面的垂線與過點作平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點、,連接、、,由于是以為直角等腰直角三角形,為的中點,,,且、分別為、的中點,所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內,如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關鍵在于找出球心的位置,同時考查了計算能力,屬于中等題.10.A【解析】

先求出集合,化簡=,令,得由二次函數(shù)的性質即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域為故選A【點睛】本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題11.D【解析】

根據題意判斷出函數(shù)的單調性,從而根據單調性對選項逐個判斷即可.【詳解】由條件可得函數(shù)關于直線對稱;在,上單調遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠,可得,選項成立;,,可知比離對稱軸遠,選項成立;,符號不定,,無法比較大小,不一定成立.故選:.【點睛】本題考查了函數(shù)的基本性質及其應用,意在考查學生對這些知識的理解掌握水平和分析推理能力.12.B【解析】

分別作出各個選項中的函數(shù)的圖象,根據圖象觀察可得結果.【詳解】對于,圖象如下圖所示:則函數(shù)在定義域上不單調,錯誤;對于,的圖象如下圖所示:則在定義域上單調遞增,且值域為,正確;對于,的圖象如下圖所示:則函數(shù)單調遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數(shù)在定義域上不單調,錯誤.故選:.【點睛】本題考查函數(shù)單調性和值域的判斷問題,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.5【解析】

先作出可行域,再做直線,平移,找到使直線在y軸上截距最小的點,代入即得?!驹斀狻孔鞒霾坏仁浇M表示的平面區(qū)域,如圖,令,則,作出直線,平移直線,由圖可得,當直線經過C點時,直線在y軸上的截距最小,由,可得,因此的最小值為.故答案為:4【點睛】本題考查不含參數(shù)的線性規(guī)劃問題,是基礎題。14.-【解析】試題分析:根據題意設三角形的三邊長分別設為為a,2a,2a,∵2a>2a>a,∴2a所對的角為最大角,設為θ,則根據余弦定理得考點:余弦定理及等比數(shù)列的定義.15.【解析】的展開式中所有項的系數(shù)之和為,,,項的系數(shù)是,故答案為(1),(2).16.【解析】

由為假,可知為真,所以對任意實數(shù)恒成立,求出的最小值,令即可.【詳解】因為為假,則其否定為真,即為真,所以對任意實數(shù)恒成立,所以.又,當且僅當,即時,等號成立,所以.故答案為:.【點睛】本題考查全稱命題與特稱命題間的關系的應用,利用參變分離是解決本題的關鍵,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)把點代入橢圓方程,結合離心率得到關于的方程,解方程即可;(Ⅱ)聯(lián)立直線與橢圓方程得到關于的一元二次方程,利用韋達定理和中垂線的定義求出線段的中垂線方程即可證明.【詳解】(Ⅰ)由已知橢圓過點得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達定理可得,,設的中點為,得,即,,的中垂線方程為,即,故得中垂線恒過點.【點睛】本題考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系及橢圓中的定值問題;考查運算求解能力和知識的綜合運用能力;正確求出橢圓方程和利用中垂線的定義正確表示出中垂線方程是求解本題的關鍵;屬于中檔題.18.(1)證明見詳解;(2)【解析】

(1)取中點,根據,利用線面垂直的判定定理,可得平面,最后可得結果.(2)利用建系,假設長度,可得,以及平面的一個法向量,然后利用向量的夾角公式,可得結果.【詳解】(1)取中點,連接,如圖由,所以由,平面所以平面,又平面所以(2)假設,由,,.所以則,所以又,平面所以平面,所以,又,故建立空間直角坐標系,如圖設平面的一個法向量為則令,所以則直線與平面所成角的正弦值為【點睛】本題考查線面垂直、線線垂直的應用,還考查線面角,學會使用建系的方法來解決立體幾何問題,將幾何問題代數(shù)化,化繁為簡,屬中檔題.19.(1)66.5(2)屬于【解析】

(1)利用頻率分布直方圖的平均數(shù)公式求解;(2)求出,即可判斷得解.【詳解】(1)(2)所以該零件屬于“不合格”的零件【點睛】本題主要考查頻率分布圖中平均數(shù)的計算和應用,意在考查學生對這些知識的理解掌握水平.20.(1);(2).【解析】

(1)令,求出的范圍,再由指數(shù)函數(shù)的單調性,即可求出結論;(2)對分類討論,分別求出以及的最小值或范圍,與的最小值建立方程關系,求出的值,進而求出的取值關系.【詳解】(1)當時,,令,∵∴,而是增函數(shù),∴,∴函數(shù)的值域是.(2)當時,則在上單調遞減,在上單調遞增,所以的最小值為,在上單調遞增,最小值為,而的最小值為,所以這種情況不可能.當時,則在上單調遞減且沒有最小值,在上單調遞增最小值為,所以的最小值為,解得(滿足題意),所以,解得.所以實數(shù)的取值范圍是.【點睛】本題考查復合函數(shù)的值域與分段函數(shù)的最值,熟練掌握二次函數(shù)圖像和性質是解題的關鍵,屬于中檔題.21.(1),表

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論