第七章應(yīng)力狀態(tài)與應(yīng)變狀態(tài)分析_第1頁(yè)
第七章應(yīng)力狀態(tài)與應(yīng)變狀態(tài)分析_第2頁(yè)
第七章應(yīng)力狀態(tài)與應(yīng)變狀態(tài)分析_第3頁(yè)
第七章應(yīng)力狀態(tài)與應(yīng)變狀態(tài)分析_第4頁(yè)
第七章應(yīng)力狀態(tài)與應(yīng)變狀態(tài)分析_第5頁(yè)
已閱讀5頁(yè),還剩107頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

CHAPTER7

ANALYSISOFSTRESSANDSTRAIN

MechanicsofMaterials第七章應(yīng)力狀態(tài)與應(yīng)變狀態(tài)分析材料力學(xué)CHAPTER7ANALYSISOFTHESTATEOFSTRESSANDSTRAIN

§7–4

PRINCEPALSTRESSESANDTHEIRTRAJECTORIESOFTHEBEAM§7–5

ANALYSISOFTRIAXIALSTRESSEDSTATE—METHODOFSTRESSCIRCLE§7–6

ANALYSISOFSTRAININAPLANE§7–7

RELATIONBETWEENSTRESSANDSTRAINUNDERCOMPLEXSTRESSEDSTATE—(GENERALIZEDHOOKE’SLAW)

§7–8STRAIN-ENERGYDENSITYUNDERCOMPLEX

STRESSEDSTATE

§7–1CONCEPTSOFTHESTATEOFSTRESS§7–2ANALYSISOFTHESTATEOFPLANESTRESS—ANALYTICALMETHOD§7–3ANALYSISOFTHESTATEOFPLANESTRESS—

GRAPHYCALMETHOD

第七章應(yīng)力狀態(tài)與應(yīng)變狀態(tài)分析

§7–1應(yīng)力狀態(tài)的概念§7–2平面應(yīng)力狀態(tài)分析——解析法§7–3平面應(yīng)力狀態(tài)分析——圖解法§7–4

梁的主應(yīng)力及其主應(yīng)力跡線§7–5

三向應(yīng)力狀態(tài)研究——應(yīng)力圓法§7–6

平面內(nèi)的應(yīng)變分析§7–7

復(fù)雜應(yīng)力狀態(tài)下的應(yīng)力--應(yīng)變關(guān)系

——(廣義虎克定律)§7–8

復(fù)雜應(yīng)力狀態(tài)下的變形比能問(wèn)題引入:桿件在幾種基本變形(拉伸、壓縮、扭轉(zhuǎn)、彎曲)的強(qiáng)度問(wèn)題,建立了只用正應(yīng)力或切應(yīng)力作用時(shí)的強(qiáng)度條件,而工程實(shí)際中,幾種基本變形組合在一起,稱為組合(疊加)變形(小變形情況下)對(duì)應(yīng)構(gòu)件橫截面上某點(diǎn)存在正應(yīng)力和切應(yīng)力時(shí),能否分別對(duì)正應(yīng)力和切應(yīng)力建立獨(dú)立的強(qiáng)度條件進(jìn)行計(jì)算?(X)前面討論構(gòu)件基本變形的強(qiáng)度問(wèn)題時(shí),是用橫截面上的危險(xiǎn)點(diǎn)處的應(yīng)力建立強(qiáng)度條件進(jìn)行強(qiáng)度計(jì)算,而有些破壞沒(méi)有發(fā)生在試件橫截面上,而是斜截面上。需研究斜截面上的應(yīng)力狀態(tài)。應(yīng)力狀態(tài)(概念):指構(gòu)件內(nèi)過(guò)一點(diǎn)處沿不同方向斜截面上的應(yīng)力狀態(tài)。應(yīng)力狀態(tài)和強(qiáng)度理論為研究桿件在復(fù)雜變形時(shí)的強(qiáng)度問(wèn)題提供了理論基礎(chǔ)。。。。研究一點(diǎn)處的應(yīng)力狀態(tài),引入單元體(P193)§7–1

CONCEPTSOFTHESTAFEOFSTRISS1、Forward1)、Investigationonthetensile,compressiveandtorsionaltestofcastironandlow-carbonsteelMLow-carbonsteelCastironPPCastironintension

PCastironincompression2)、Howwillthememberruptureincombineddeformations?MPANALYSISOFSTRESSANDSTRAIN§7–1應(yīng)力狀態(tài)的概念應(yīng)力狀態(tài)與應(yīng)變狀態(tài)一、引言1、鑄鐵與低碳鋼的拉、壓、扭試驗(yàn)現(xiàn)象是怎樣產(chǎn)生的?M低碳鋼鑄鐵PP鑄鐵拉伸P鑄鐵壓縮2、組合變形桿將怎樣破壞?MP4、Expressionofstressesingeneralcase

3、Element:Element—Delegateofapointinthemember.Itisainfinitesimalgeometricbodyenvelopingthestudiedpoint.Incommonuseitisacorrectitudecubicbody.Propertiesofanelement—a、Stressesaredistributed uniformlyinthesections;

b、Thestressesintwoplanesthatare paralleltoeachotherareequal.2、Stateofstressatapoint:

Therearecountlesssectionsthroughapoint.Thegatheringofstressesinallsectionsiscalledthestateofstressatthispoint.xyzs

xsz

s

ytxyANALYSISOFSTRESSANDSTRAIN四、普遍狀態(tài)下的應(yīng)力表示

三、單元體:?jiǎn)卧w——構(gòu)件內(nèi)的點(diǎn)的代表物,是包圍被研究點(diǎn)的無(wú)限小的幾何體,常用的是正六面體。單元體的性質(zhì)——a、平行面上,應(yīng)力均布;

b、平行面上,應(yīng)力相等。二、一點(diǎn)的應(yīng)力狀態(tài):

過(guò)一點(diǎn)有無(wú)數(shù)的截面,這一點(diǎn)的各個(gè)截面上應(yīng)力情況的集合,稱為這點(diǎn)的應(yīng)力狀態(tài)(StateofStressataGivenPoint)。xyzs

xsz

s

y應(yīng)力狀態(tài)與應(yīng)變狀態(tài)txyxyzs

xsz

s

ytxy5、Theoremofconjugateshearingstress:

Shearingstressesonperpendicularplanesareequalinmagnitudeandhavedirectionssuchthatbothstressespointtoward,orbothpointawayform,thelineofintersectionofthefaces.ANALYSISOFSTRESSANDSTRAINProvement:Theelementisinequilibrium.xyzs

xsz

s

y應(yīng)力狀態(tài)與應(yīng)變狀態(tài)txy五、剪應(yīng)力互等定理(TheoremofConjugateShearing

Stress):

過(guò)一點(diǎn)的兩個(gè)正交面上,如果有與相交邊垂直的剪應(yīng)力分量,則兩個(gè)面上的這兩個(gè)剪應(yīng)力分量一定等值、方向相對(duì)或相離。6、Originalelement(knownelement):Example1

PlottheknownelementsofpointA、B、Cshowninthefollowingfigures.ANALYSISOFSTRESSANDSTRAINtzx

PPAAsxsxMPxyzBCsxsxBtxztxytyxtzx六、原始單元體(已知單元體):[例1]

畫(huà)出下列圖中的A、B、C點(diǎn)的已知單元體。

應(yīng)力狀態(tài)與應(yīng)變狀態(tài)PPAAsxsxMPxyzBCsxsxBtxztxytyx7、Principalelement、principalplanes、principalstresses:

Principalelement:

Theelementinwhichtheshearingstressesinsideplanesareallzero.

PrincipalPlanes:

Theplanesonwhichtheshearingstressesarezero.

Principalstresses:

Normalstressesactingontheprincipleplanes.conventionoftheorderforthreeprincipalstresses:

Inmagnitudeofthealgebraicvalue,s1s2s3xyzsxsyszANALYSISOFSTRESSANDSTRAIN七、主單元體、主平面、主應(yīng)力:主單元體(Principalbidy):各側(cè)面上剪應(yīng)力均為零的單元體。主平面(PrincipalPlane):剪應(yīng)力為零的截面。主應(yīng)力(PrincipalStress

):主平面上的正應(yīng)力。主應(yīng)力排列規(guī)定:按代數(shù)值大小,應(yīng)力狀態(tài)與應(yīng)變狀態(tài)s1s2s3xyzsxsysz補(bǔ)充:

從受力構(gòu)件內(nèi)的某一點(diǎn)處,取出一個(gè)單元體。一般來(lái)講,其側(cè)面上既有正應(yīng)力,也有切應(yīng)力。但是可以證明:在該點(diǎn)以不同方位截取的諸單元體中,有一個(gè)特殊的單元體,在這個(gè)單元體的測(cè)面上只有正應(yīng)力而無(wú)切應(yīng)力。這樣的單元體稱為該點(diǎn)處的主單元體。主單元體的側(cè)面稱為主平面。主平面的正應(yīng)力為主應(yīng)力,主應(yīng)力是正應(yīng)力的極值。主平面的法線方向?yàn)橹鞣较?,即主?yīng)力方向。在一般情況下,過(guò)一點(diǎn)所去主單元體的6個(gè)側(cè)面上有3對(duì)主應(yīng)力,3個(gè)主應(yīng)力皆不為零,該點(diǎn)的應(yīng)力狀態(tài)稱為3向應(yīng)力狀態(tài),有2個(gè)不為零,稱為兩向應(yīng)力狀態(tài),。。單向應(yīng)力狀態(tài)。

Stateoftheuniaxialstress:

Stateofstressthatoneprincipalstressisnotequaltozero.

Stateofthebiaxialstress:

Stateofstressthatoneprincipalstressisequaltozero.

StateofthetriaxialStress:Stateofstressthatallthethreeprincipalstressesarenotequaltozero.AsxsxtzxsxsxBtxzANALYSISOFSTRESSANDSTRAIN單向應(yīng)力狀態(tài)(UnidirectionalStateofStress):一個(gè)主應(yīng)力不為零的應(yīng)力狀態(tài)。

二向應(yīng)力狀態(tài)(PlaneStateofStress):一個(gè)主應(yīng)力為零的應(yīng)力狀態(tài)。應(yīng)力狀態(tài)與應(yīng)變狀態(tài)三向應(yīng)力狀態(tài)(Three—DimensionalStateof

Stress):三個(gè)主應(yīng)力都不為零的應(yīng)力狀態(tài)。AsxsxtzxsxsxBtxz

§7–2

ANALYSISOFTHESTATEOFPLANESTRESS—ANALYTICALMETHOD

equivalentsxtxysyxyzxysxtxysyOANALYSISOFSTRESSANDSTRAIN§7–2

平面應(yīng)力狀態(tài)分析——解析法應(yīng)力狀態(tài)與應(yīng)變狀態(tài)sxtxysyxyzxysxtxysyOStipulate:

ispositiveifitsdirectionisthesamewithoneoftheexternalnormallineofthesection;taispositiveifitmaketheelementrotateclockwise;

Acountclockwiseangleaisconsideredtobepositive.Fig.1AssumethatareaoftheinclinedsectionisS.Accordingtotheequilibriumofthefreebodyweget:1、StressesactinginarbitraryinclinedplanexysxtxysyOsytyxsxsataaxyOtnFig.2ANALYSISOFSTRESSANDSTRAIN規(guī)定:截面外法線同向?yàn)檎?/p>

ta繞研究對(duì)象順時(shí)針轉(zhuǎn)為正;

a逆時(shí)針為正。圖1設(shè):斜截面面積為S,由分離體平衡得:一、任意斜截面上的應(yīng)力應(yīng)力狀態(tài)與應(yīng)變狀態(tài)xysxtxysyOsytyxsxsataaxyOtn圖2Fig.1xysxtxysyOsytyxsxsataaxyOtnFig.2Consideringconjugateofshearingstressesandtrigonometricidentitiesweget:Similarly:ANALYSISOFSTRESSANDSTRAIN圖1應(yīng)力狀態(tài)與應(yīng)變狀態(tài)xysxtxysyOsytyxsxsataaxyOtn圖2考慮剪應(yīng)力互等和三角變換,得:同理:2、TheextremevaluesforthestressxysxtxysyOANALYSISOFSTRESSANDSTRAINandtwoextremumsThuswecangettwostationarypointsExtremenormalstressesareprincipalstresses.二、極值應(yīng)力應(yīng)力狀態(tài)與應(yīng)變狀態(tài)xysxtxysyOisinthequadrantfortheshearingstresstopointandleantothelargerofbothxandy222xyyxminmaxtsstt+-±=?íì

)(xysxtxysyOMainelemeutANALYSISOFSTRESSANDSTRAINThatistheanglebetweentheplanesinwhichshearingstressesreachextremumsandtheprincipalplanesis.在剪應(yīng)力相對(duì)的象限內(nèi),且偏向于x

及y較大的一側(cè)。應(yīng)力狀態(tài)與應(yīng)變狀態(tài)222xyyxminmaxtsstt+-±=?íì

)(xysxtxysyO

主單元體Example2Analyzethefailureofthecircularshaftintorsion.Solution:Determinethecriticalpointandplottheoriginalelement.Determinetheextreme-valuestresstxyCtyxMCxyOtxytyxANALYSISOFSTRESSANDSTRAIN[例2]

分析受扭構(gòu)件的破壞規(guī)律。解:確定危險(xiǎn)點(diǎn)并畫(huà)其原始單元體求極值應(yīng)力應(yīng)力狀態(tài)與應(yīng)變狀態(tài)txyCtyxMCxyOtxytyxAnalysisoffailure:Low-carbonsteelCastironANALYSISOFSTRESSANDSTRAINLow-carbonsteel:Castiron:破壞分析應(yīng)力狀態(tài)與應(yīng)變狀態(tài)低碳鋼鑄鐵

§7–3

ANALYSISOFTHESTATEOFSTRESS— GRAPHYCALMETHOD

Eliminatingtheparameter2

fromtheaboveequation,weget:1、StressCircle

xysxtxysyOsytxyxsxsataaxyOtncurveofthisequationisacircle—stresscircle(orMohr’scircle,introducedbyGermanengineerOttoMohr)ANALYSISOFSTRESSANDSTRAIN§7–3

平面應(yīng)力狀態(tài)分析——圖解法對(duì)上述方程消去參數(shù)(2),得:一、應(yīng)力圓(

StressCircle)應(yīng)力狀態(tài)與應(yīng)變狀態(tài)xysxtxysyO此方程曲線為圓—應(yīng)力圓(或莫爾圓,由德國(guó)工程師:OttoMohr引入)sytxyxsxsataaxyOtnSetupastresscoordinatesystemasshowninthefollowingfigure.(Payattentiontotheselectionofthescale)2、MethodtoplotthestresscirclePlotthepoint

A(x,xy)andthepointB(y,yx)inthecoordinatesystem.

Inclinedline

ABintersectstheaxis

saatthepointC.Thispointisthecenterofthestresscircle.Plotacircle—stresscirclewiththecenterCandtheradiusAC.sxtxysyxyOnsataaOsataCA(sx,txy)B(sy,tyx)x2anD(sa,

ta)ANALYSISOFSTRESSANDSTRAIN建立應(yīng)力坐標(biāo)系,如下圖所示,(注意選好比例尺)二、應(yīng)力圓的畫(huà)法在坐標(biāo)系內(nèi)畫(huà)出點(diǎn)A(x,xy)和B(y,yx)

AB與sa

軸的交點(diǎn)C便是圓心。以C為圓心,以AC為半徑畫(huà)圓——應(yīng)力圓;應(yīng)力狀態(tài)與應(yīng)變狀態(tài)sxtxysyxyOnsataaOsataCA(sx,txy)B(sy,tyx)x2anD(sa,

ta)sxtxysyxyOnsataaOsataCA(sx,txy)B(sy,tyx)x2anD(sa,

ta)3、CorrespondingrelationbetweentheelementandstresscircleStress(,)inplane

Apoint(,)onthestresscircumferenceNormallineofplaneRadiusofthestresscircleAnglebetweentwosections

Angle2betweentworadiuses;Andthedirectionofrotationisthesame.ANALYSISOFSTRESSANDSTRAIN應(yīng)力狀態(tài)與應(yīng)變狀態(tài)sxtxysyxyOnsataaOsataCA(sx,txy)B(sy,tyx)x2anD(sa,

ta)三、單元體與應(yīng)力圓的對(duì)應(yīng)關(guān)系面上的應(yīng)力(,)

應(yīng)力圓上一點(diǎn)(,)面的法線應(yīng)力圓的半徑兩面夾角兩半徑夾角2

;且轉(zhuǎn)向一致。4、MarkextremestressesonthecircumferenceofthestresscircleOCsataA(sx,txy)B(sy,tyx)x2a12a0s1s2s3ANALYSISOFSTRESSANDSTRAIN四、在應(yīng)力圓上標(biāo)出極值應(yīng)力應(yīng)力狀態(tài)與應(yīng)變狀態(tài)OCsataA(sx,txy)B(sy,tyx)x2a12a0s1s2s3s3Example3

Determineprincipalstressesandorientationofprincipalplanesoftheelementasshowninthefigure.(unit:MPa)AB

12Method1-graphicalmethod:Stresscoordinatesystemisshowninthefigure.IntersectionCoftheperpendicularbisectionlineofABandtheaxis

saisthecenterofthecircle.PlotthecirclewiththecenterCandthearadiusAC—stress

circle.0s1s2BAC2s0sata(MPa)(MPa)O20MPaPlotthepointand

ANALYSISOFSTRESSANDSTRAINs3例3

求圖示單元體的主應(yīng)力及主平面的位置。(單位:MPa)AB

12解法1——圖解法:主應(yīng)力坐標(biāo)系如圖AB的垂直平分線與sa

軸的交點(diǎn)C便是圓心,以C為圓心,以AC為半徑畫(huà)圓——應(yīng)力圓0應(yīng)力狀態(tài)與應(yīng)變狀態(tài)s1s2BAC2s0sata(MPa)(MPa)O20MPa在坐標(biāo)系內(nèi)畫(huà)出點(diǎn)s3s1s2BAC2s0sata(MPa)(MPa)O20MPaPrincipalstressesandprincipalplanesasshowninthefigure

102ABANALYSISOFSTRESSANDSTRAINs3應(yīng)力狀態(tài)與應(yīng)變狀態(tài)s1s2BAC2s0sata(MPa)(MPa)O20MPa主應(yīng)力及主平面如圖

102ABMethod2—analyticalmethod:Analysis—setupthecoordinateasshowninthefigure.60°xyOANALYSISOFSTRESSANDSTRAIN解法2—解析法:分析——建立坐標(biāo)系如圖60°應(yīng)力狀態(tài)與應(yīng)變狀態(tài)xyO§7–4

PRINCIPALSTRESSESANDTHEIR TRAJECTORIESOFTHEBEAM12345P1P2qElement:ANALYSISOFSTRESSANDSTRAINAsshowninthefigure,thebeamproducedtheshearbending(transversalbending),where.M、Q>0inthebeam.Trytodeterminethemagnitudeoftheprincipalstressesandthepositionoftheprincipalplanesofeachpointinthesection.§7–4

梁的主應(yīng)力及其主應(yīng)力跡線應(yīng)力狀態(tài)與應(yīng)變狀態(tài)12345P1P2q如圖,已知梁發(fā)生剪切彎曲(橫力彎曲),其上M、Q>0,試確定截面上各點(diǎn)主應(yīng)力大小及主平面位置。單元體:21s1s3s33s1s34s1s1s35a0–45°a0stA1A2D2D1COsA2D2D1CA1Ot2a0stD2CD1O2a0=–90°sD2A1Ot2a0CD1A2stA2D2D1CA1OANALYSISOFSTRESSANDSTRAIN應(yīng)力狀態(tài)與應(yīng)變狀態(tài)21s1s3s33s1s34s1s1s35a0–45°a0stA1A2D2D1COsA2D2D1CA1Ot2a0stD2CD1O2a0=–90°sD2A1Ot2a0CD1A2stA2D2D1CA1OTensileforceCompressiveforcePrincipalstresstrajectories:

Envelopesofthedirectionlinesofprincipalstresses—tangentateachpointonthecurveindicatestheorientationofthetensile(orcompressive)principalstressatthesamepoint.Solidlinesexpressthetensileprincipalstresstrajectories;dashedlinesexpressthecompressiveprincipalstresstrajectories.1313ANALYSISOFSTRESSANDSTRAIN拉力壓力主應(yīng)力跡線(StressTrajectories):主應(yīng)力方向線的包絡(luò)線——曲線上每一點(diǎn)的切線都指示著該點(diǎn)的拉主應(yīng)力方位(或壓主應(yīng)力方位)。實(shí)線表示拉主應(yīng)力跡線;虛線表示壓主應(yīng)力跡線。應(yīng)力狀態(tài)與應(yīng)變狀態(tài)1313xyMethodtoplotprincipalstresstrajectories:11

22

33

44

ii

nn

bacdANALYSISOFSTRESSANDSTRAINq1331Sectionsectionsectionsectionsectionsection

qxy主應(yīng)力跡線的畫(huà)法:11截面22截面33截面44截面ii截面nn截面bacd13應(yīng)力狀態(tài)與應(yīng)變狀態(tài)31§7–5

ANALYSISOFTRIAXIALSTRESSEDSTATE— METHODOFSTRESSCIRCLEs2s1xyzs31、SpatialstressedstateANALYSISOFSTRESSANDSTRAIN§7–5

三向應(yīng)力狀態(tài)研究——應(yīng)力圓法應(yīng)力狀態(tài)與應(yīng)變狀態(tài)s2s1xyzs31、空間應(yīng)力狀態(tài)2、Analysisofthetriaxialstress

Fig.aFig.bThemaximumshearingstressinsidethewholeelementis:tmaxs2s1xyzs3ANALYSISOFSTRESSANDSTRAINElastictheoryprovedthat

stressesonanyplanepassingthroughapointinbytheelementshowninFig.amaybe

correspondingto

thecoordinatesofapointonthecircumferenceofthestresscircleorintheshadowregion.2、三向應(yīng)力分析彈性理論證明,圖a單元體內(nèi)任意一點(diǎn)任意截面上的應(yīng)力都對(duì)應(yīng)著圖b的應(yīng)力圓上或陰影區(qū)內(nèi)的一點(diǎn)。圖a圖b整個(gè)單元體內(nèi)的最大剪應(yīng)力為:tmax應(yīng)力狀態(tài)與應(yīng)變狀態(tài)s2s1xyzs3Example4Determinetheprincipalstressesandthemaximumshearingstressoftheelementshowninthefigure.(MPa)Solution:

Fromtheelementsketchweknowplaneyzisaprincipalplane.Setupstresscoordinatesasshowninthefigure.Plotthestresscircleandlocatethepoint1,get:5040xyz3010

(MPa)sa(MPa)taABCABs1s2s3tmaxANALYSISOFSTRESSANDSTRAIN[例4]

求圖示單元體的主應(yīng)力和最大剪應(yīng)力。(MPa)解:由單元體圖知:yz面為主平面建立應(yīng)力坐標(biāo)系如圖,畫(huà)應(yīng)力圓和點(diǎn)1,得:應(yīng)力狀態(tài)與應(yīng)變狀態(tài)5040xyz3010(M

Pa)sa(M

Pa)taABCABs1s2s3tmax§7–6

ANALYSISOFSTRAININAPLANExyO

1、DeterminetheexpressionofstrainanalysisbythemethodofsuperpositionabcdaAOBShearingstrain:Incrementalquantityoftherightangle?。∣nlylikethisthecontentsintheprecedingsectionandthefollowingsectionCancorrespondtoeachother.)DD1EE1ANALYSISOFSTRESSANDSTRAIN§7–6

平面內(nèi)的應(yīng)變分析xyO一、疊加法求應(yīng)變分析公式abcdaAOB剪應(yīng)變:直角的增大量?。ㄖ挥羞@樣,前后才對(duì)應(yīng))應(yīng)力狀態(tài)與應(yīng)變狀態(tài)DD1EE1xyOabcdaAOBDD2EE2ANALYSISOFSTRESSANDSTRAIN應(yīng)力狀態(tài)與應(yīng)變狀態(tài)xyOabcdaAOBDD2EE2DD3EE3xyOabcdaAOBANALYSISOFSTRESSANDSTRAINDD3EE3應(yīng)力狀態(tài)與應(yīng)變狀態(tài)xyOabcdaAOBANALYSISOFSTRESSANDSTRAIN應(yīng)力狀態(tài)與應(yīng)變狀態(tài)2)、Plotthestraincircleaccordingtostrain()ofapoint.2、Graphicalmethodofstrainanalysis—straincircle1)、AnalogicrelationofstresscircleandstraincircleSetupstraincoordinatesasshowninthefigurelocatethepoint

A(x,xy/2)and

B(y,-yx/2)inthecoordinatesystemintersectionofABandaxisa

isthecenterofthecircle.plotcirclebythecenterCwitharadiusAC—straincircle.eaga/2ABCANALYSISOFSTRESSANDSTRAIN2、已知一點(diǎn)A的應(yīng)變(),畫(huà)應(yīng)變圓二、應(yīng)變分析圖解法——應(yīng)變圓(StrainCircle)1、應(yīng)變圓與應(yīng)力圓的類比關(guān)系建立應(yīng)變坐標(biāo)系如圖在坐標(biāo)系內(nèi)畫(huà)出點(diǎn)

A(x,xy/2)

B(y,-yx/2)AB與a

軸的交點(diǎn)C便是圓心以C為圓心,以AC為半徑畫(huà)圓——應(yīng)變圓。應(yīng)力狀態(tài)與應(yīng)變狀態(tài)eaga/2ABCeaga/23、Correspondingrelationbetweenthestrainindirectionandstraincirclemaxmin20D(,/2)2nStrainindirection(,/2)Apointonthestraincircle(,/2)Thedirectionlineof

RadiusofthestraincircleAnglebetweentwodirections

Angle2betweenthetworadiusesandthedirectionofrotationisthesame.ABCANALYSISOFSTRESSANDSTRAINeaga/2三、方向上的應(yīng)變與應(yīng)變圓的對(duì)應(yīng)關(guān)系maxmin20D(,/2)2n應(yīng)力狀態(tài)與應(yīng)變狀態(tài)方向上的應(yīng)變(,/2)

應(yīng)變圓上一點(diǎn)(,/2)

方向線應(yīng)變圓的半徑兩方向間夾角兩半徑夾角2

;且轉(zhuǎn)向一致。ABC4、ValuesandorientationofprincipalstrainsANALYSISOFSTRESSANDSTRAIN四、主應(yīng)變數(shù)值及其方位應(yīng)力狀態(tài)與應(yīng)變狀態(tài)Example5Knowingthreestrains1、2and3indirections1、2and3atapointinsomeplane,determinetheprincipalstrainsinthisplane.Solution:Firstfindout

x,y,xy

bysolvingtheabovethreeequationsthendeterminetheprincipalstrains.ANALYSISOFSTRESSANDSTRAIN[例5]

已知一點(diǎn)在某一平面內(nèi)的1、2、3

方向上的線應(yīng)變分別為1、2、3,,求該面內(nèi)的主應(yīng)變。解:由i=1,2,3這三個(gè)方程求出

x,y,xy;然后再求主應(yīng)變。應(yīng)力狀態(tài)與應(yīng)變狀態(tài)Example6Determinetheprincipalstrainsofthepointafterthreelinearstrainsatthispointaretestedbythe

strainfoilof45°.xyu45o0maxANALYSISOFSTRESSANDSTRAIN[例6]用45°應(yīng)變花測(cè)得一點(diǎn)的三個(gè)線應(yīng)變后,求該點(diǎn)的主應(yīng)變。xyu45o0max應(yīng)力狀態(tài)與應(yīng)變狀態(tài)

§7–7

STRESS—STRAINRELATIONUNDERTHECOMPLEX STRESSEDSTATE—(GENERALIZEDHOOKE’SLAW)

1、Stress-strainrelationinuniaxialtension

2、Stress-strainrelationinpureshearxyzsxxyz

x

yANALYSISOFSTRESSANDSTRAIN§7–7

復(fù)雜應(yīng)力狀態(tài)下的應(yīng)力--應(yīng)變關(guān)系

——(廣義虎克定律)一、單拉下的應(yīng)力--應(yīng)變關(guān)系二、純剪的應(yīng)力--應(yīng)變關(guān)系應(yīng)力狀態(tài)與應(yīng)變狀態(tài)xyzsxxyz

x

y3、Stress-strainrelationincomplexstressedstate

Accordingtosuperpositionweget:

xyzszsytxysxANALYSISOFSTRESSANDSTRAIN三、復(fù)雜狀態(tài)下的應(yīng)力---應(yīng)變關(guān)系依疊加原理,得:應(yīng)力狀態(tài)與應(yīng)變狀態(tài)

xyzszsytxysxPrincipalstress—principalstrainrelation4、Stress-strainrelation

underthestateofplanestressThedirectionsarethesames1s3s2ANALYSISOFSTRESSANDSTRAIN主應(yīng)力---主應(yīng)變關(guān)系四、平面狀態(tài)下的應(yīng)力---應(yīng)變關(guān)系:方向一致應(yīng)力狀態(tài)與應(yīng)變狀態(tài)s1s3s2Thedirectionsoftheprincipalstressandtheprincipalstrainarethesame.ANALYSISOFSTRESSANDSTRAIN主應(yīng)力與主應(yīng)變方向一致。應(yīng)力狀態(tài)與應(yīng)變狀態(tài)5、Relationbetweenthevolumetricstrainandstresscomponents:Volumetricstrain:Relationbetweenthevolumetricstrainandstresscomponents:s1s3s2a1a2a3ANALYSISOFSTRESSANDSTRAIN五、體積應(yīng)變與應(yīng)力分量間的關(guān)系體積應(yīng)變:體積應(yīng)變與應(yīng)力分量間的關(guān)系:應(yīng)力狀態(tài)與應(yīng)變狀態(tài)s1s3s2a1a2a3Example7Astructurememberissubjectedtosomeforces.Twoprincipalstrainsatapointonthefreesurfaceofthememberare1=24010-6

2=–16010-6,modulusofelasticityisE=210GPa,Possion’sratiois=0.3.Trytodeterminetheprincipalstressesandanotherprincipalstrainatthispoint.,ThenthispointisinthestatANALYSISOFSTRESSANDSTRAINSolution:OnthefreesurfaceOfplanestress..[例7]已知一受力構(gòu)件自由表面上某一點(diǎn)處的兩個(gè)面內(nèi)主應(yīng)變分別為:1=24010-6,

2=–16010-6,彈性模量E=210GPa,泊松比為=0.3,試求該點(diǎn)處的主應(yīng)力及另一主應(yīng)變。所以,該點(diǎn)處為平面應(yīng)力狀態(tài)應(yīng)力狀態(tài)與應(yīng)變狀態(tài)ANALYSISOFSTRESSANDSTRAINe3342.-=×10-6應(yīng)力狀態(tài)與應(yīng)變狀態(tài)e3342.-=×10-6Example

8

Athin-walledcontainersubjectedtoinsidepressureisshowninFig.a.Inordertodeterminethevalueoftheinsidepressurethehoopstraintestedonthesurfaceofthecontainerwithstrainfoilist

=350×l06.IfthemeandiameterofthecontainerisD=500mm,thicknessofitswallis=10mm,E=210GPa,=0.25.Tryto:1.derivetheexpressionsofstressinthelateralandlongitudinalsectionsofthecontainer.2.calculatetheinsidepressureofthecontainer.pppxstsmLpODxAByFig.aANALYSISOFSTRESSANDSTRAIN[例8]

圖a所示為承受內(nèi)壓的薄壁容器。為測(cè)量容器所承受的內(nèi)壓力值,在容器表面用電阻應(yīng)變片測(cè)得環(huán)向應(yīng)變t

=350×l06,若已知容器平均直徑D=500mm,壁厚=10mm,容器材料的E=210GPa,=0.25,試求:1.導(dǎo)出容器橫截面和縱截面上的正應(yīng)力表達(dá)式;2.計(jì)算容器所受的內(nèi)壓力。應(yīng)力狀態(tài)與應(yīng)變狀態(tài)pODxABy圖apppxstsmL1)LongitudinalstressesSolution:Expressionsofthecircumferentialandlongitudinalstressofthecontainerreservoir

CuttingthecontaineralongasectionshownandinFig.bconsideringtheequilibriumoftherightpart,wegetpsmsmxDFig.bANALYSISOFSTRESSANDSTRAIN1、軸向應(yīng)力:(longitudinalstress)解:容器的環(huán)向和縱向應(yīng)力表達(dá)式用橫截面將容器截開(kāi),受力如圖b所示,根據(jù)平衡方程應(yīng)力狀態(tài)與應(yīng)變狀態(tài)psmsmxD圖b

Imaginecutoffthecontaineralonglongitudinalsection,andtaketheupperpantasthestudyobject.ThefreebodydiagramisshowninFig.c2、Circumferentialstress3、Determinetheinsidepressure(bystress-strainrelation)t

mEx

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論