2023學年江蘇省宜興市丁蜀區(qū)中考數(shù)學對點突破模擬試卷含解析及點睛_第1頁
2023學年江蘇省宜興市丁蜀區(qū)中考數(shù)學對點突破模擬試卷含解析及點睛_第2頁
2023學年江蘇省宜興市丁蜀區(qū)中考數(shù)學對點突破模擬試卷含解析及點睛_第3頁
2023學年江蘇省宜興市丁蜀區(qū)中考數(shù)學對點突破模擬試卷含解析及點睛_第4頁
2023學年江蘇省宜興市丁蜀區(qū)中考數(shù)學對點突破模擬試卷含解析及點睛_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023中考數(shù)學模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖是正方體的表面展開圖,則與“前”字相對的字是()A.認 B.真 C.復 D.習2.袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質(zhì)地等完全相同,在看不到球的條件下,隨機地從袋子中摸出三個球.下列事件是必然事件的是()A.摸出的三個球中至少有一個球是黑球B.摸出的三個球中至少有一個球是白球C.摸出的三個球中至少有兩個球是黑球D.摸出的三個球中至少有兩個球是白球3.已知一次函數(shù)y=kx+b的圖象如圖,那么正比例函數(shù)y=kx和反比例函數(shù)y=在同一坐標系中的圖象的形狀大致是()A. B.C. D.4.已知空氣的單位體積質(zhì)量是0.001239g/cm3,則用科學記數(shù)法表示該數(shù)為()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm35.如果關(guān)于x的分式方程有負分數(shù)解,且關(guān)于x的不等式組的解集為x<-2,那么符合條件的所有整數(shù)a的積是()A.-3 B.0 C.3 D.96.如圖,左、右并排的兩棵樹AB和CD,小樹的高AB=6m,大樹的高CD=9m,小明估計自己眼睛距地面EF=1.5m,當他站在F點時恰好看到大樹頂端C點.已知此時他與小樹的距離BF=2m,則兩棵樹之間的距離BD是()A.1m B.m C.3m D.m7.某校舉行“漢字聽寫比賽”,5個班級代表隊的正確答題數(shù)如圖.這5個正確答題數(shù)所組成的一組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.10,15 B.13,15 C.13,20 D.15,158.下列計算,正確的是()A. B.C.3 D.9.計算(1-)÷的結(jié)果是()A.x-1 B. C. D.10.一個幾何體的俯視圖如圖所示,其中的數(shù)字表示該位置上小正方體的個數(shù),那么這個幾何體的主視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB=AC,AD∥BC,若∠BAC=80°,則∠DAC=__________.12.計算:3﹣1﹣30=_____.13.點A(﹣3,y1),B(2,y2),C(3,y3)在拋物線y=2x2﹣4x+c上,則y1,y2,y3的大小關(guān)系是_____.14.如圖,以原點O為圓心的圓交X軸于A、B兩點,交y軸的正半軸于點C,D為第一象限內(nèi)⊙O上的一點,若∠DAB=20°,則∠OCD=.15.如圖,在△ABC中,點D、E分別在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,則BC=_____.16.為有效開展“陽光體育”活動,某校計劃購買籃球和足球共50個,購買資金不超過3000元.若每個籃球80元,每個足球50元,則籃球最多可購買_____個.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中∠ABC=90°,AC的垂直平分線交BC于D點,交AC于E點,OC=OD.(1)若,DC=4,求AB的長;(2)連接BE,若BE是△DEC的外接圓的切線,求∠C的度數(shù).18.(8分)如圖中的小方格都是邊長為1的正方形,△ABC的頂點和O點都在正方形的頂點上.以點O為位似中心,在方格圖中將△ABC放大為原來的2倍,得到△A′B′C′;△A′B′C′繞點B′順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A″B′C″,并求邊A′B′在旋轉(zhuǎn)過程中掃過的圖形面積.19.(8分)如圖,一座鋼結(jié)構(gòu)橋梁的框架是△ABC,水平橫梁BC長18米,中柱AD高6米,其中D是BC的中點,且AD⊥BC.(1)求sinB的值;(2)現(xiàn)需要加裝支架DE、EF,其中點E在AB上,BE=2AE,且EF⊥BC,垂足為點F,求支架DE的長.20.(8分)西安匯聚了很多人們耳熟能詳?shù)年兾髅朗常钊A和王濤同時去選美食,李華準備在“肉夾饃(A)、羊肉泡饃(B)、麻醬涼皮(C)、(biang)面(D)”這四種美食中選擇一種,王濤準備在“秘制涼皮(E)、肉丸胡辣湯(F)、葫蘆雞(G)、水晶涼皮(H)”這四種美食中選擇一種.(1)求李華選擇的美食是羊肉泡饃的概率;(2)請用畫樹狀圖或列表的方法,求李華和王濤選擇的美食都是涼皮的概率.21.(8分)如圖,已知拋物線y=ax2+bx+5經(jīng)過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結(jié)CD.求該拋物線的表達式;點P為該拋物線上一動點(與點B、C不重合),設(shè)點P的橫坐標為t.①當點P在直線BC的下方運動時,求△PBC的面積的最大值;②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.22.(10分)如圖,在平面直角坐標系中,點O為坐標原點,已知△ABC三個定點坐標分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).畫出△ABC關(guān)于x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的坐標:A1(,),B1(,),C1(,);畫出點C關(guān)于y軸的對稱點C2,連接C1C2,CC2,C1C,并直接寫出△CC1C2的面積是.23.(12分)已知:如圖,在半徑為2的扇形中,°,點C在半徑OB上,AC的垂直平分線交OA于點D,交弧AB于點E,聯(lián)結(jié).(1)若C是半徑OB中點,求的正弦值;(2)若E是弧AB的中點,求證:;(3)聯(lián)結(jié)CE,當△DCE是以CD為腰的等腰三角形時,求CD的長.24.有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7分鐘同時到達C點,乙機器人始終以60米/分的速度行走,如圖是甲、乙兩機器人之間的距離y(米)與他們的行走時間x(分鐘)之間的函數(shù)圖象,請結(jié)合圖象,回答下列問題:(1)A、B兩點之間的距離是米,甲機器人前2分鐘的速度為米/分;(2)若前3分鐘甲機器人的速度不變,求線段EF所在直線的函數(shù)解析式;(3)若線段FG∥x軸,則此段時間,甲機器人的速度為米/分;(4)求A、C兩點之間的距離;(5)若前3分鐘甲機器人的速度不變,直接寫出兩機器人出發(fā)多長時間相距28米.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】分析:由平面圖形的折疊以及正方體的展開圖解題,罪域正方體的平面展開圖中相對的面一定相隔一個小正方形.詳解:由圖形可知,與“前”字相對的字是“真”.故選B.點睛:本題考查了正方體的平面展開圖,注意正方體的空間圖形,從相對面入手分析及解答問題.2、A【解析】

根據(jù)必然事件的概念:在一定條件下,必然發(fā)生的事件叫做必然事件分析判斷即可.【詳解】A、是必然事件;B、是隨機事件,選項錯誤;C、是隨機事件,選項錯誤;D、是隨機事件,選項錯誤.故選A.3、C【解析】試題分析:如圖所示,由一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限,可得k>1,b<1.因此可知正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限,反比例函數(shù)y=的圖象經(jīng)過第二、四象限.綜上所述,符合條件的圖象是C選項.故選C.考點:1、反比例函數(shù)的圖象;2、一次函數(shù)的圖象;3、一次函數(shù)圖象與系數(shù)的關(guān)系4、A【解析】試題分析:0.001219=1.219×10﹣1.故選A.考點:科學記數(shù)法—表示較小的數(shù).5、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數(shù)a取值為﹣3;﹣1;1;3,之積為1.故選D.6、B【解析】

由∠AGE=∠CHE=90°,∠AEG=∠CEH可證明△AEG∽△CEH,根據(jù)相似三角形對應(yīng)邊成比例求出GH的長即BD的長即可.【詳解】由題意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,∵AG⊥EH,CH⊥EH,∴∠AGE=∠CHE=90°,∵∠AEG=∠CEH,∴△AEG∽△CEH,∴==,即=,解得:GH=,則BD=GH=m,故選:B.【點睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是從實際問題中抽象出相似三角形.7、D【解析】

將五個答題數(shù),從小打到排列,5個數(shù)中間的就是中位數(shù),出現(xiàn)次數(shù)最多的是眾數(shù).【詳解】將這五個答題數(shù)排序為:10,13,15,15,20,由此可得中位數(shù)是15,眾數(shù)是15,故選D.【點睛】本題考查中位數(shù)和眾數(shù)的概念,熟記概念即可快速解答.8、B【解析】

根據(jù)二次根式的加減法則,以及二次根式的性質(zhì)逐項判斷即可.【詳解】解:∵=2,∴選項A不正確;∵=2,∴選項B正確;∵3﹣=2,∴選項C不正確;∵+=3≠,∴選項D不正確.故選B.【點睛】本題主要考查了二次根式的加減法,以及二次根式的性質(zhì)和化簡,要熟練掌握,解答此題的關(guān)鍵是要明確:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數(shù)相同的二次根式進行合并,合并方法為系數(shù)相加減,根式不變.9、B【解析】

先計算括號內(nèi)分式的加法、將除式分子因式分解,再將除法轉(zhuǎn)化為乘法,約分即可得.【詳解】解:原式=(-)÷=?=,故選B.【點睛】本題主要考查分式的混合運算,解題的關(guān)鍵是掌握分式混合運算順序和運算法則.10、A【解析】

一一對應(yīng)即可.【詳解】最左邊有一個,中間有兩個,最右邊有三個,所以選A.【點睛】理解立體幾何的概念是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、50°【解析】

根據(jù)等腰三角形頂角度數(shù),可求出每個底角,然后根據(jù)兩直線平行,內(nèi)錯角相等解答.【詳解】解:∵AB=AC,∠BAC=80°,∴∠B=∠C=(180°﹣80°)÷2=50°;∵AD∥BC,∴∠DAC=∠C=50°,故答案為50°.【點睛】本題考查了等腰三角形的性質(zhì)以及平行線性質(zhì)的應(yīng)用,注意:兩直線平行,內(nèi)錯角相等.12、﹣.【解析】

原式利用零指數(shù)冪、負整數(shù)指數(shù)冪法則計算即可求出值.【詳解】原式=﹣1=﹣.故答案是:﹣.【點睛】考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.13、y2<y3<y1【解析】

把點的坐標分別代入拋物線解析式可分別求得y1、y2、y3的值,比較可求得答案.【詳解】∵y=2x2-4x+c,∴當x=-3時,y1=2×(-3)2-4×(-3)+c=30+c,當x=2時,y2=2×22-4×2+c=c,當x=3時,y3=2×32-4×3+c=6+c,∵c<6+c<30+c,∴y2<y3<y1,故答案為y2<y3<y1.【點睛】本題主要考查二次函數(shù)圖象上點的坐標特征,掌握函數(shù)圖象上點的坐標滿足函數(shù)解析式是解題的關(guān)鍵.14、65°【解析】

解:由題意分析之,得出弧BD對應(yīng)的圓周角是∠DAB,所以,=40°,由此則有:∠OCD=65°考點:本題考查了圓周角和圓心角的關(guān)系點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要對圓心角、弧、弦等的基本性質(zhì)要熟練把握15、1【解析】

先由DE∥BC,可證得△ADE∽△ABC,進而可根據(jù)相似三角形得到的比例線段求得BC的長.【詳解】解:∵DE∥BC,∴△ADE∽△ABC,∴DE:BC=AD:AB,∵AD=2,DB=4,∴AB=AD+BD=6,∴1:BC=2:6,∴BC=1,故答案為:1.【點睛】考查了相似三角形的性質(zhì)和判定,關(guān)鍵是求出相似后得出比例式,在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.16、1【解析】

設(shè)購買籃球x個,則購買足球個,根據(jù)總價單價購買數(shù)量結(jié)合購買資金不超過3000元,即可得出關(guān)于x的一元一次不等式,解之取其中的最大整數(shù)即可.【詳解】設(shè)購買籃球x個,則購買足球個,根據(jù)題意得:,解得:.為整數(shù),最大值為1.故答案為1.【點睛】本題考查了一元一次不等式的應(yīng)用,根據(jù)各數(shù)量間的關(guān)系,正確列出一元一次不等式是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1);(2)30°【解析】

(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易證,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例線段可求AB;

(2)連接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切線,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜邊上的中線,那么BE=CE,于是∠EBC=∠C,從而有∠EOB=∠EDC,又OE=OD,易證△DEO是等邊三角形,那么∠EDC=60°,從而可求∠C.【詳解】解:(1)∵AC的垂直平分線交BC于D點,交AC于E點,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴DE=,∴AC=6,∴AB:6=:4,∴AB=;(2)連接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切線,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中點,∠ABC=90°,∴BE=EC,∴∠EBC=∠C,∴∠EOB=∠EDC,又∵OE=OD,∴△DOE是等邊三角形,∴∠EDC=60°,∴∠C=30°.【點睛】考查了切線的性質(zhì)、線段垂直平分線的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理、等邊三角形的判定和性質(zhì).解題的關(guān)鍵是連接OE,構(gòu)造直角三角形.18、(1)作圖見解析;(2)作圖見解析;5π(平方單位).【解析】

(1)連接AO、BO、CO并延長到2AO、2BO、2CO長度找到各點的對應(yīng)點,順次連接即可.(2)△A′B′C′的A′、C′繞點B′順時針旋轉(zhuǎn)90°得到對應(yīng)點,順次連接即可.A′B′在旋轉(zhuǎn)過程中掃過的圖形面積是一個扇形,根據(jù)扇形的面積公式計算即可.【詳解】解:(1)見圖中△A′B′C′

(2)見圖中△A″B′C″

扇形的面積(平方單位).【點睛】本題主要考查了位似圖形及旋轉(zhuǎn)變換作圖的方法及扇形的面積公式.19、(1)sinB=;(2)DE=1.【解析】

(1)在Rt△ABD中,利用勾股定理求出AB,再根據(jù)sinB=計算即可;(2)由EF∥AD,BE=2AE,可得,求出EF、DF即可利用勾股定理解決問題;【詳解】(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB==3,∴sinB==.(2)∵EF∥AD,BE=2AE,∴,∴,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE==1.考點:1.解直角三角形的應(yīng)用;2.平行線分線段成比例定理.20、(1);(2)見解析.【解析】

(1)直接根據(jù)概率的意義求解即可;(2)列出表格,再找到李華和王濤同時選擇的美食都是涼皮的情況數(shù),利用概率公式即可求得答案.【詳解】解:(1)李華選擇的美食是羊肉泡饃的概率為;(2)列表得:EFGHAAEAFAGAHBBEBFBGBHCCECFCGCHDDEDFDGDH由列表可知共有16種情況,其中李華和王濤選擇的美食都是涼皮的結(jié)果數(shù)為2,所以李華和王濤選擇的美食都是涼皮的概率為=.【點睛】本題涉及樹狀圖或列表法的相關(guān)知識,難度中等,考查了學生的分析能力.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標為P(﹣,﹣)或(0,5).【解析】

(1)將點A、B坐標代入二次函數(shù)表達式,即可求出二次函數(shù)解析式;(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1,設(shè)點G(t,t+1),則點P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設(shè)直線BP與CD交于點H,當點P在直線BC下方時,求出線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,、聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯(lián)立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點;當點P(P′)在直線BC上方時,根據(jù)∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達式為:y=2x+5,聯(lián)立y=x2+6x+5和y=2x+5,求出x,即可求出P.【詳解】解:(1)將點A、B坐標代入二次函數(shù)表達式得:,解得:,故拋物線的表達式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點C(﹣1,0);(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1…②,設(shè)點G(t,t+1),則點P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當t=﹣時,其最大值為;②設(shè)直線BP與CD交于點H,當點P在直線BC下方時,∵∠PBC=∠BCD,∴點H在BC的中垂線上,線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,設(shè)BC中垂線的表達式為:y=﹣x+m,將點(﹣,﹣)代入上式并解得:直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯(lián)立①⑤并解得:x=﹣或﹣4(舍去﹣4),故點P(﹣,﹣);當點P(P′)在直線BC上方時,∵∠PBC=∠BCD,∴BP′∥CD,則直線BP′的表達式為:y=2x+s,將點B坐標代入上式并解得:s=5,即直線BP′的表達式為:y=2x+5…⑥,聯(lián)立①⑥并解得:x=0或﹣4(舍去﹣4),故點P(0,5);故點P的坐標為P(﹣,﹣)或(0,5).【點睛】本題考查的是二次函數(shù),熟練掌握拋物線的性質(zhì)是解題的關(guān)鍵.22、(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)見解析,1.【解析】

(1)分別作出點A、B、C關(guān)于x軸的對稱點,再順次連接可得;(2)作出點C關(guān)于y軸的對稱點,然后連接得到三角形,根據(jù)面積公式計算可得.【詳解】(1)如圖所示,△A1B1C1即為所求.A1(﹣1,﹣1)B1(﹣3,﹣3),C1(﹣1,﹣2).故答案為:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;(2)如圖所示,△CC1C2的面積是2×1=1.故答案為:1.【點睛】本題考查了作圖﹣軸對稱變換,解題的關(guān)鍵是熟練掌握軸對稱變換的定義和性質(zhì).23、(2);(2)詳見解析;(2)當是以CD為腰的等腰三角形時,CD的長為2或.【解析】

(2)先求出OCOB=2,設(shè)OD=x,得出CD=AD=OA﹣OD=2﹣x,根據(jù)勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結(jié)論;(2)先判斷出,進而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結(jié)論;(3)分兩種情況:①當CD=CE時,判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②當CD=DE時,判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進而得出∠DEA=∠OEA,即:點D和點O重合,即可得出結(jié)論.【詳解】(2)∵C是半徑OB中點,∴OCOB=2.∵DE是AC的垂直平分線,∴AD=CD.設(shè)OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根據(jù)勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如圖2,連接AE,CE.∵DE是AC垂直平分線,∴AE=CE.∵E是弧AB的中點,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.連接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO?BC;(3)△DCE是以CD為腰的等腰三角形,分兩種情況討論:①當CD=CE時.∵DE是AC的垂直平分線,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四邊形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,設(shè)菱形的邊長為a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△CO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論