版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是上一點,且,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為()A.45° B.50° C.55° D.60°2.在平面直角坐標系中,位于第二象限的點是()A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)3.已知拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點,其橫坐標為1,則一次函數(shù)y=bx+ac的圖象可能是(
)A.
B.
C.
D.4.通州區(qū)大運河森林公園占地面積10700畝,是北京規(guī)模最大的濱河森林公園,將10700用科學記數(shù)法表示為()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×1045.如圖,在中,,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是()A. B. C. D.6.“龜兔賽跑”是同學們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時間t的關系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是()A.賽跑中,兔子共休息了50分鐘B.烏龜在這次比賽中的平均速度是0.1米/分鐘C.兔子比烏龜早到達終點10分鐘D.烏龜追上兔子用了20分鐘7.在圓錐、圓柱、球、正方體這四個幾何體中,主視圖不可能是多邊形的是()A.圓錐 B.圓柱 C.球 D.正方體8.如圖,O為直線AB上一點,OE平分∠BOC,OD⊥OE于點O,若∠BOC=80°,則∠AOD的度數(shù)是()A.70° B.50° C.40° D.35°9.如圖所示的幾何體的主視圖正確的是()A. B. C. D.10.下列二次根式,最簡二次根式是()A.8 B.12 C.5 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H,給出下列結論:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH?PC其中正確的是_____(填序號)12.請看楊輝三角(1),并觀察下列等式(2):根據(jù)前面各式的規(guī)律,則(a+b)6=.13.若一個扇形的圓心角為60°,面積為6π,則這個扇形的半徑為__________.14.如圖,等腰△ABC中,AB=AC,∠BAC=50°,AB的垂直平分線MN交AC于點D,則∠DBC的度數(shù)是____________.15.二次函數(shù)的圖象如圖,若一元二次方程有實數(shù)根,則的最大值為___16.《九章算術》是我國古代數(shù)學名著,書中有下列問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“今有直角三角形,勾(短直角邊)長為5步,股(長直角邊)長為12步,問該直角三角形能容納的正方形邊長最大是多少步?”該問題的答案是______步.三、解答題(共8題,共72分)17.(8分)某興趣小組進行活動,每個男生都頭戴藍色帽子,每個女生都頭戴紅色帽子.帽子戴好后,每個男生都看見戴紅色帽子的人數(shù)比戴藍色帽子的人數(shù)的2倍少1,而每個女生都看見戴藍色帽子的人數(shù)是戴紅色帽子的人數(shù)的.問該興趣小組男生、女生各有多少人?18.(8分)已知拋物線經(jīng)過點,.把拋物線與線段圍成的封閉圖形記作.(1)求此拋物線的解析式;(2)點為圖形中的拋物線上一點,且點的橫坐標為,過點作軸,交線段于點.當為等腰直角三角形時,求的值;(3)點是直線上一點,且點的橫坐標為,以線段為邊作正方形,且使正方形與圖形在直線的同側(cè),當,兩點中只有一個點在圖形的內(nèi)部時,請直接寫出的取值范圍.19.(8分)如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F(1)求證:△ADE≌△BFE;(2)若DF平分∠ADC,連接CE,試判斷CE和DF的位置關系,并說明理由.20.(8分)我國古代數(shù)學著作《增刪算法統(tǒng)宗》記載“繩索量竿”問題:“一條竿子一條索,索比竿子長一托,折回索子卻量竿,卻比竿子短一托”其大意為:現(xiàn)有一根竿和一根繩索,用繩索去量竿,繩索比竿長5尺;如果將繩索對半折后再去量竿,就比竿短5尺.求繩索長和竿長.21.(8分)如圖1,圖2…、圖m是邊長均大于2的三角形、四邊形、…、凸n邊形.分別以它們的各頂點為圓心,以1為半徑畫弧與兩鄰邊相交,得到3條弧、4條弧…、n條弧.(1)圖1中3條弧的弧長的和為,圖2中4條弧的弧長的和為;(2)求圖m中n條弧的弧長的和(用n表示).22.(10分)計算:1223.(12分)如圖,已知拋物線y=ax2+bx+5經(jīng)過A(﹣5,0),B(﹣4,﹣3)兩點,與x軸的另一個交點為C,頂點為D,連結CD.求該拋物線的表達式;點P為該拋物線上一動點(與點B、C不重合),設點P的橫坐標為t.①當點P在直線BC的下方運動時,求△PBC的面積的最大值;②該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,求出所有點P的坐標;若不存在,請說明理由.24.如圖,AB為⊙O的直徑,點D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.求證:CD∥AB;填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
先根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠ADC的度數(shù),再由圓周角定理得出∠DCE的度數(shù),根據(jù)三角形外角的性質(zhì)即可得出結論.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì),圓周角定理.圓內(nèi)接四邊形對角互補.在同圓或等圓中,同弧或等弧所對的圓心角相等,而同弧所對的圓周角等于圓心角的一半,所以在同圓或等圓中,同弧或等弧所對的圓周角相等.2、D【解析】
點在第二象限的條件是:橫坐標是負數(shù),縱坐標是正數(shù),直接得出答案即可.【詳解】根據(jù)第二象限的點的坐標的特征:橫坐標符號為負,縱坐標符號為正,各選項中只有C(﹣3,1)符合,故選:D.【點睛】本題考查點的坐標的性質(zhì),解題的關鍵是掌握點的坐標的性質(zhì).3、B【解析】分析:根據(jù)拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點,可得b>0,根據(jù)交點橫坐標為1,可得a+b+c=b,可得a,c互為相反數(shù),依此可得一次函數(shù)y=bx+ac的圖象.詳解:∵拋物線y=ax2+bx+c與反比例函數(shù)y=的圖象在第一象限有一個公共點,∴b>0,∵交點橫坐標為1,∴a+b+c=b,∴a+c=0,∴ac<0,∴一次函數(shù)y=bx+ac的圖象經(jīng)過第一、三、四象限.故選B.點睛:考查了一次函數(shù)的圖象,反比例函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),關鍵是得到b>0,ac<0.4、D【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:10700=1.07×104,
故選:D.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.5、C【解析】
如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【詳解】解:如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當Q2在AB邊上時,P2與B重合時,P2Q2經(jīng)過圓心,經(jīng)過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是1.故選:C.【點睛】本題考查切線的性質(zhì)、三角形中位線定理等知識,解題的關鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考??碱}型.6、D【解析】分析:根據(jù)圖象得出相關信息,并對各選項一一進行判斷即可.詳解:由圖象可知,在賽跑中,兔子共休息了:50-10=40(分鐘),故A選項錯誤;烏龜跑500米用了50分鐘,平均速度為:(米/分鐘),故B選項錯誤;兔子是用60分鐘到達終點,烏龜是用50分鐘到達終點,兔子比烏龜晚到達終點10分鐘,故C選項錯誤;在比賽20分鐘時,烏龜和兔子都距起點200米,即烏龜追上兔子用了20分鐘,故D選項正確.故選D.點睛:本題考查了從圖象中獲取信息的能力.正確識別圖象、獲取信息并進行判斷是解題的關鍵.7、C【解析】【分析】根據(jù)各幾何體的主視圖可能出現(xiàn)的情況進行討論即可作出判斷.【詳解】A.圓錐的主視圖可以是三角形也可能是圓,故不符合題意;B.圓柱的主視圖可能是長方形也可能是圓,故不符合題意;C.球的主視圖只能是圓,故符合題意;D.正方體的主視圖是正方形或長方形(中間有一豎),故不符合題意,故選C.【點睛】本題考查了簡單幾何體的三視圖——主視圖,明確主視圖是從物體正面看得到的圖形是關鍵.8、B【解析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數(shù).詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點睛:本題考查了角平分線的定義:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角的平分線.性質(zhì):若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.9、D【解析】
主視圖是從前向后看,即可得圖像.【詳解】主視圖是一個矩形和一個三角形構成.故選D.10、C【解析】
檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、被開方數(shù)含開的盡的因數(shù),故A不符合題意;B、被開方數(shù)含分母,故B不符合題意;C、被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,故C符合題意;D、被開方數(shù)含能開得盡方的因數(shù)或因式,故D不符合題意.故選C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式.二、填空題(本大題共6個小題,每小題3分,共18分)11、①②④【解析】
由正方形的性質(zhì)和相似三角形的判定與性質(zhì),即可得出結論.【詳解】∵△BPC是等邊三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正確;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正確;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD與△PDB不會相似;故③錯誤;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH?PC,故④正確;故答案是:①②④.【點睛】本題考查的正方形的性質(zhì),等邊三角形的性質(zhì)以及相似三角形的判定和性質(zhì),解答此題的關鍵是熟練掌握性質(zhì)和定理.12、a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.【解析】
通過觀察可以看出(a+b)2的展開式為2次7項式,a的次數(shù)按降冪排列,b的次數(shù)按升冪排列,各項系數(shù)分別為2、2、25、20、25、2、2.【詳解】通過觀察可以看出(a+b)2的展開式為2次7項式,a的次數(shù)按降冪排列,b的次數(shù)按升冪排列,各項系數(shù)分別為2、2、25、20、25、2、2.所以(a+b)2=a2+2a5b+25a4b2+20a3b3+25a2b4+2ab5+b2.13、6【解析】設這個扇形的半徑為,根據(jù)題意可得:,解得:.故答案為.14、15°【解析】分析:根據(jù)等腰三角形的性質(zhì)得出∠ABC的度數(shù),根據(jù)中垂線的性質(zhì)得出∠ABD的度數(shù),最后求出∠DBC的度數(shù).詳解:∵AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°-50°)=65°,∵MN為AB的中垂線,∴∠ABD=∠BAC=50°,∴∠DBC=65°-50°=15°.點睛:本題主要考查的是等腰三角形的性質(zhì)以及中垂線的性質(zhì)定理,屬于中等難度的題型.理解中垂線的性質(zhì)是解決這個問題的關鍵.415、3【解析】試題解析::∵拋物線的開口向上,頂點縱坐標為-3,∴a>1.-=-3,即b2=12a,∵一元二次方程ax2+bx+m=1有實數(shù)根,∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,∴m的最大值為3,16、.【解析】
如圖,根據(jù)正方形的性質(zhì)得:DE∥BC,則△ADE∽△ACB,列比例式可得結論.【詳解】如圖,∵四邊形CDEF是正方形,∴CD=ED,DE∥CF,設ED=x,則CD=x,AD=12-x,∵DE∥CF,∴∠ADE=∠C,∠AED=∠B,∴△ADE∽△ACB,∴=,∴=,∴x=,故答案為.【點睛】本題考查了相似三角形的判定和性質(zhì)、正方形的性質(zhì),設未知數(shù),構建方程是解題的關鍵.三、解答題(共8題,共72分)17、男生有12人,女生有21人.【解析】
設該興趣小組男生有x人,女生有y人,然后再根據(jù):(男生的人數(shù)-1)×2-1=女生的人數(shù),(女生的人數(shù)-1)×=男生的人數(shù)
,列出方程組,再進行求解即可.【詳解】設該興趣小組男生有x人,女生有y人,依題意得:,解得:.答:該興趣小組男生有12人,女生有21人.【點睛】本題主要考查了二元一次方程組的應用,解題的關鍵是明確題中各個量之間的關系,并找出等量關系列出方程組.18、(1);(2)-2或-1;(3)-1≤n<1或1<n≤3.【解析】
(1)把點,代入拋物線得關于a,b的二元一次方程組,解出這個方程組即可;(2)根據(jù)題意畫出圖形,分三種情況進行討論;(3)作出圖形,把其中一點恰好在拋物線上時算出,再確定其取值范圍.【詳解】解:(1)依題意,得:解得:∴此拋物線的解析式;(2)設直線AB的解析式為y=kx+b,依題意得:解得:∴直線AB的解析式為y=-x.∵點P的橫坐標為m,且在拋物線上,∴點P的坐標為(m,)∵軸,且點Q有線段AB上,∴點Q的坐標為(m,-m)①當PQ=AP時,如圖,∵∠APQ=90°,軸,∴解得,m=-2或m=1(舍去)②當AQ=AP時,如圖,過點A作AC⊥PQ于C,∵為等腰直角三角形,∴2AC=PQ即m=1(舍去)或m=-1.綜上所述,當為等腰直角三角形時,求的值是-2惑-1.;(3)①如圖,當n<1時,依題意可知C,D的橫坐標相同,CE=2(1-n)∴點E的坐標為(n,n-2)當點E恰好在拋物線上時,解得,n=-1.∴此時n的取值范圍-1≤n<1.②如圖,當n>1時,依題可知點E的坐標為(2-n,-n)當點E在拋物線上時,解得,n=3或n=1.∵n>1.∴n=3.∴此時n的取值范圍1<n≤3.綜上所述,n的取值范圍為-1≤n<1或1<n≤3.【點睛】本題主要考查了二次函數(shù)與幾何圖形的綜合應用,掌握相關幾何圖形的性質(zhì)和二次函數(shù)的性質(zhì)是解題的關鍵.19、(1)見解析;(1)見解析.【解析】
(1)由全等三角形的判定定理AAS證得結論.(1)由(1)中全等三角形的對應邊相等推知點E是邊DF的中點,∠1=∠1;根據(jù)角平分線的性質(zhì)、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質(zhì)推知CE⊥DF.【詳解】解:(1)證明:如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC.又∵點F在CB的延長線上,∴AD∥CF.∴∠1=∠1.∵點E是AB邊的中點,∴AE=BE,∵在△ADE與△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如圖,連接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即點E是DF的中點,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.20、繩索長為20尺,竿長為15尺.【解析】
設索長為x尺,竿子長為y尺,根據(jù)“索比竿子長一托,對折索子來量竿,卻比竿子短一托”,即可得出關于x、y的二元一次方程組,解之即可得出結論.【詳解】設繩索長、竿長分別為尺,尺,依題意得:解得:,.答:繩索長為20尺,竿長為15尺.【點睛】本題考查了二元一次方程組的應用,找準等量關系,正確列出二元一次方程組是解題的關鍵.21、(1)π,2π;(2)(n﹣2)π.【解析】
(1)利用弧長公式和三角形和四邊形的內(nèi)角和公式代入計算;(2)利用多邊形的內(nèi)角和公式和弧長公式計算.【詳解】(1)利用弧長公式可得=π,因為n1+n2+n3=180°.同理,四邊形的==2π,因為四邊形的內(nèi)角和為360度;(2)n條?。剑?n﹣2)π.【點睛】本題考查了多邊形的內(nèi)角和定理以及扇形的面積公式和弧長的計算公式,理解公式是關鍵.22、-1【解析】
先化簡二次根式、計算負整數(shù)指數(shù)冪、分母有理化、去絕對值符號,再合并同類二次根式即可得.【詳解】原式=1﹣4﹣+1﹣=﹣1.【點睛】本題考查了實數(shù)的混合運算,熟練掌握二次根式的性質(zhì)、分母有理化、負整數(shù)指數(shù)冪的意義、絕對值的意義是解答本題的關鍵.23、(1)y=x2+6x+5;(2)①S△PBC的最大值為;②存在,點P的坐標為P(﹣,﹣)或(0,5).【解析】
(1)將點A、B坐標代入二次函數(shù)表達式,即可求出二次函數(shù)解析式;(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1,設點G(t,t+1),則點P(t,t2+6t+5),利用三角形面積公式求出最大值即可;②設直線BP與CD交于點H,當點P在直線BC下方時,求出線段BC的中點坐標為(﹣,﹣),過該點與BC垂直的直線的k值為﹣1,求出直線BC中垂線的表達式為:y=﹣x﹣4…③,同理直線CD的表達式為:y=2x+2…④,、聯(lián)立③④并解得:x=﹣2,即點H(﹣2,﹣2),同理可得直線BH的表達式為:y=x﹣1…⑤,聯(lián)立⑤和y=x2+6x+5并解得:x=﹣,即可求出P點;當點P(P′)在直線BC上方時,根據(jù)∠PBC=∠BCD求出BP′∥CD,求出直線BP′的表達式為:y=2x+5,聯(lián)立y=x2+6x+5和y=2x+5,求出x,即可求出P.【詳解】解:(1)將點A、B坐標代入二次函數(shù)表達式得:,解得:,故拋物線的表達式為:y=x2+6x+5…①,令y=0,則x=﹣1或﹣5,即點C(﹣1,0);(2)①如圖1,過點P作y軸的平行線交BC于點G,將點B、C的坐標代入一次函數(shù)表達式并解得:直線BC的表達式為:y=x+1…②,設點G(t,t+1),則點P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,當t=﹣時,其最大值為;②設直線BP與CD交于點H,當點P在直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度智能車位銷售代理合作協(xié)議書4篇
- 2025年度草原生態(tài)旅游投資合作草場租賃合同3篇
- 2025年度生態(tài)旅游項目土地承包合作協(xié)議范本4篇
- 2025版新能源汽車研發(fā)與制造承包合同范本3篇
- 二零二五版高校學生實習實訓合同示范文本3篇
- 2025年度冷鏈物流保障下餐飲原材料集中采購合同2篇
- 2025年食品安全追溯食品運輸采購合同3篇
- 2025版害蟲防治產(chǎn)品認證與推廣服務合同3篇
- 二零二五年度酒店行業(yè)顧客信息保密與隱私保護協(xié)議范本4篇
- 教育行業(yè)售后服務模式在小區(qū)超市的應用
- 2025新譯林版英語七年級下單詞表
- 新疆2024年中考數(shù)學試卷(含答案)
- 2024-2030年中國連續(xù)性腎臟替代治療(CRRT)行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- 跨學科主題學習:實施策略、設計要素與評價方式(附案例)
- 場地委托授權
- 2024年四川省成都市龍泉驛區(qū)中考數(shù)學二診試卷(含答案)
- 項目工地春節(jié)放假安排及安全措施
- 印染廠安全培訓課件
- 紅色主題研學課程設計
- 裝置自動控制的先進性說明
- 《企業(yè)管理課件:團隊管理知識點詳解PPT》
評論
0/150
提交評論