2022屆北京市第四中學高三二診模擬考試數學試卷含解析_第1頁
2022屆北京市第四中學高三二診模擬考試數學試卷含解析_第2頁
2022屆北京市第四中學高三二診模擬考試數學試卷含解析_第3頁
2022屆北京市第四中學高三二診模擬考試數學試卷含解析_第4頁
2022屆北京市第四中學高三二診模擬考試數學試卷含解析_第5頁
免費預覽已結束,剩余14頁可下載查看

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數列的前項和為,若,,則數列的公差為()A. B. C. D.2.復數的虛部為()A. B. C.2 D.3.已知實數滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.114.已知雙曲線(,)的左、右焦點分別為,以(為坐標原點)為直徑的圓交雙曲線于兩點,若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.5.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.6.設i是虛數單位,若復數是純虛數,則a的值為()A. B.3 C.1 D.7.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.8.如圖,網格紙上小正方形的邊長為,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為()A. B. C. D.9.已知復數z滿足(i為虛數單位),則z的虛部為()A. B. C.1 D.10.中,點在邊上,平分,若,,,,則()A. B. C. D.11.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=012.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知,,為的中點,為以為直徑的圓上一動點,則的最小值是_____.14.已知直線與圓心為的圓相交于兩點,且,則實數的值為_________.15.已知函數在上僅有2個零點,設,則在區(qū)間上的取值范圍為_______.16.已知點是橢圓上一點,過點的一條直線與圓相交于兩點,若存在點,使得,則橢圓的離心率取值范圍為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)近年來,隨著“霧霾”天出現的越來越頻繁,很多人為了自己的健康,外出時選擇戴口罩,在一項對人們霧霾天外出時是否戴口罩的調查中,共調查了人,其中女性人,男性人,并根據統(tǒng)計數據畫出等高條形圖如圖所示:(1)利用圖形判斷性別與霧霾天外出戴口罩是否有關系并說明理由;(2)根據統(tǒng)計數據建立一個列聯表;(3)能否在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩的關系.附:18.(12分)在平面直角坐標系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.19.(12分)已知數列的前項和為,且滿足.(Ⅰ)求數列的通項公式;(Ⅱ)證明:.20.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點,且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.21.(12分)如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,.(1)求橢圓的標準方程;(2)設、是橢圓上位于直線同側的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關系,并求證直線的斜率為定值.22.(10分)已知凸邊形的面積為1,邊長,,其內部一點到邊的距離分別為.求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

根據等差數列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數列的計算,意在考查學生的計算能力.2.D【解析】

根據復數的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復數的除法運算和復數的概念.3.A【解析】

根據約束條件畫出可行域,再將目標函數化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時候為過點的時候,解得所以,此時故選A項【點睛】本題考查線性規(guī)劃求一次相加的目標函數,屬于常規(guī)題型,是簡單題.4.D【解析】

連接,可得,在中,由余弦定理得,結合雙曲線的定義,即得解.【詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據雙曲線的定義,得,所以雙曲線的離心率故選:D【點睛】本題考查了雙曲線的性質及雙曲線的離心率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.5.B【解析】

首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.6.D【解析】

整理復數為的形式,由復數為純虛數可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數,所以,則,故選:D【點睛】本題考查已知復數的類型求參數范圍,考查復數的除法運算.7.A【解析】

先根據已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點睛】本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學生對這些知識的掌握水平和分析推理能力.8.D【解析】

根據三視圖判斷出幾何體是由一個三棱錐和一個三棱柱構成,利用錐體和柱體的體積公式計算出體積并相加求得幾何體的體積.【詳解】由三視圖可知該幾何體的直觀圖是由一個三棱錐和三棱柱構成,該多面體體積為.故選D.【點睛】本小題主要考查三視圖還原為原圖,考查柱體和錐體的體積公式,屬于基礎題.9.D【解析】

根據復數z滿足,利用復數的除法求得,再根據復數的概念求解.【詳解】因為復數z滿足,所以,所以z的虛部為.故選:D.【點睛】本題主要考查復數的概念及運算,還考查了運算求解的能力,屬于基礎題.10.B【解析】

由平分,根據三角形內角平分線定理可得,再根據平面向量的加減法運算即得答案.【詳解】平分,根據三角形內角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.11.A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.12.B【解析】

由題意畫出圖形,設球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設球的半徑為,,,由,得.如圖:設三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點睛】本題考查三棱錐的外接球、三棱錐的側面積、體積,基本不等式等基礎知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數學轉化思想方法與數形結合的解題思想方法,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

建立合適的直角坐標系,求出相關點的坐標,進而可得的坐標表示,利用平面向量數量積的坐標表示求出的表達式,求出其最小值即可.【詳解】建立直角坐標系如圖所示:則點,,,設點,所以,由平面向量數量積的坐標表示可得,,其中,因為,所以的最小值為.故答案為:【點睛】本題考查平面向量數量積的坐標表示和利用輔助角公式求最值;考查數形結合思想和轉化與化歸能力、運算求解能力;建立直角坐標系,把表示為關于角的三角函數,利用輔助角公式求最值是求解本題的關鍵;屬于中檔題.14.0或6【解析】

計算得到圓心,半徑,根據得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.【點睛】本題考查了根據直線和圓的位置關系求參數,意在考查學生的計算能力和轉化能力。15.【解析】

先根據零點個數求解出的值,然后得到的解析式,采用換元法求解在上的值域即可.【詳解】因為在上有兩個零點,所以,所以,所以且,所以,所以,所以,令,所以,所以,因為,所以,所以,所以,所以,,所以.故答案為:.【點睛】本題考查三角函數圖象與性質的綜合,其中涉及到換元法求解三角函數值域的問題,難度較難.對形如的函數的值域求解,關鍵是采用換元法令,然后根據,將問題轉化為關于的函數的值域,同時要注意新元的范圍.16.【解析】

設,設出直線AB的參數方程,利用參數的幾何意義可得,由題意得到,據此求得離心率的取值范圍.【詳解】設,直線AB的參數方程為,(為參數)代入圓,化簡得:,,,,存在點,使得,,即,,,,故答案為:【點睛】本題主要考查了橢圓離心率取值范圍的求解,考查直線、圓與橢圓的綜合運用,考查直線參數方程的運用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)圖形見解析,理由見解析;(2)見解析;(3)犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩有關系【解析】

(1)利用等高條形圖中兩個深顏色條的高比較得出性別與霧霾天外出戴口罩有關系;(2)填寫列聯表即可;(3)由表中數據,計算觀測值,對照臨界值得出結論.【詳解】解:(1)在等高條形圖中,兩個深色條的高分別表示女性和男性中霧霾天外出戴口罩的頻率,比較圖中兩個深色條的高可以發(fā)現,女性中霧霾天外出帶口罩的頻率明顯高于男性中霧霾天外出帶口罩的頻率,因此可以認為性別與霧霾天外出帶口罩有關系.(2)列聯表如下:戴口罩不戴口罩合計女性男性合計(3)由(2)中數據可得:.所以,在犯錯誤的概率不超過的前提下認為性別與霧霾天外出戴口罩有關系.【點睛】本題考查了列聯表與獨立性檢驗的應用問題,也考查了登高條形圖的應用問題,屬于基礎題.18.(1)(2)為定值.【解析】

(1)根據題意,得出,從而得出橢圓的標準方程.(2)根據題意設直線方程:,因為直線與橢圓相切,這有一個交點,聯立直線與橢圓方程得,則,解得①把和代入,得和,,的表達式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標準方程為.(2)為定值.①因為直線分別與直線和直線相交,所以,直線一定存在斜率.②設直線:,由得,由,得.①把代入,得,把代入,得,又因為,所以,,②由①式,得,③把③式代入②式,得,,即為定值.【點睛】本題考查橢圓的定義、方程、和性質,主要考查橢圓方程的運用,考查橢圓的定值問題,考查計算能力和轉化思想,是中檔題.19.(Ⅰ),.(Ⅱ)見解析【解析】

(1)由,分和兩種情況,即可求得數列的通項公式;(2)由題,得,利用等比數列求和公式,即可得到本題答案.【詳解】(Ⅰ)解:由題,得當時,,得;當時,,整理,得.數列是以1為首項,2為公比的等比數列,,;(Ⅱ)證明:由(Ⅰ)知,,故.故得證.【點睛】本題主要考查根據的關系式求通項公式以及利用等比數列的前n項和公式求和并證明不等式,考查學生的運算求解能力和推理證明能力.20.(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【解析】

(I)取的中點,連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點,易得面,利用棱錐的體積公式,計算出棱錐的體積.【詳解】(Ⅰ)取的中點,連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點,所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點,即面,.【點睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.21.(1);(2)詳見解析.【解析】試題分析:(1)利用題中條件先得出的值,然后利用條件,結合橢圓的對稱性得到點的坐標,然后將點的坐標代入橢圓方程求出的值,從而確定橢圓的方程;(2)將條件得到直線與的斜率直線的關系(互為相反數),然后設直線的方程為,將此直線的方程與橢圓方程聯立,求出點的坐標,注意到直線與的斜率之間的關系得到點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論