版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.2.已知集合,,則等于()A. B. C. D.3.已知函數(shù),則不等式的解集是()A. B. C. D.4.已知函數(shù),若關于的不等式恰有1個整數(shù)解,則實數(shù)的最大值為()A.2 B.3 C.5 D.85.設,是兩條不同的直線,,是兩個不同的平面,給出下列四個命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個數(shù)為()A. B. C. D.6.已知平面向量滿足與的夾角為,且,則實數(shù)的值為()A. B. C. D.7.已知,則()A. B. C. D.8.已知復數(shù)z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.函數(shù)的圖象與軸交點的橫坐標構成一個公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位10.若與互為共軛復數(shù),則()A.0 B.3 C.-1 D.411.為了加強“精準扶貧”,實現(xiàn)偉大復興的“中國夢”,某大學派遣甲、乙、丙、丁、戊五位同學參加三個貧困縣的調研工作,每個縣至少去1人,且甲、乙兩人約定去同一個貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.6412.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積是_____;最長棱的長度是_____.14.已知向量,,若,則________.15.古代“五行”學認為:“物質分金、木、土、水、火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質任意排成一列,但排列中屬性相克的兩種物質不相鄰,則這樣的排列方法有_________種.(用數(shù)字作答)16.已知函數(shù)恰好有3個不同的零點,則實數(shù)的取值范圍為____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)對于很多人來說,提前消費的認識首先是源于信用卡,在那個工資不高的年代,信用卡絕對是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風來”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調查機構借助網(wǎng)絡進行了問卷調查,并從參與調查的網(wǎng)友中隨機抽取了100人進行抽樣分析,得到如下列聯(lián)表(單位:人)經常使用信用卡偶爾或不用信用卡合計40歲及以下15355040歲以上203050合計3565100(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關?(2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按“經常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人贈送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調查的40歲以上的網(wǎng)民中隨機抽取3人贈送禮品,記其中經常使用信用卡的人數(shù)為,求隨機變量的分布列、數(shù)學期望和方差.參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0102.0722.7063.8415.0246.63518.(12分)在中,角,,的對邊分別為,,,,,且的面積為.(1)求;(2)求的周長.19.(12分)已知函數(shù)(其中是自然對數(shù)的底數(shù))(1)若在R上單調遞增,求正數(shù)a的取值范圍;(2)若f(x)在處導數(shù)相等,證明:;(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側).20.(12分)在中,角,,所對的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大小;(2)求的值.21.(12分)已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標準方程,(2)若,,四邊形ABCD內接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.22.(10分)如圖,在三棱柱中,、、分別是、、的中點.(1)證明:平面;(2)若底面是正三角形,,在底面的投影為,求到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
據(jù)題意以菱形對角線交點為坐標原點建立平面直角坐標系,用坐標表示出,再根據(jù)坐標形式下向量的數(shù)量積運算計算出結果.【詳解】設與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標系,則,,,,,所以.故選:B.【點睛】本題考查建立平面直角坐標系解決向量的數(shù)量積問題,難度一般.長方形、正方形、菱形中的向量數(shù)量積問題,如果直接計算較麻煩可考慮用建系的方法求解.2、A【解析】
進行交集的運算即可.【詳解】,1,2,,,,1,.故選:.【點睛】本題主要考查了列舉法、描述法的定義,考查了交集的定義及運算,考查了計算能力,屬于基礎題.3、B【解析】
由導數(shù)確定函數(shù)的單調性,利用函數(shù)單調性解不等式即可.【詳解】函數(shù),可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點睛】本題主要考查了利用導數(shù)判定函數(shù)的單調性,根據(jù)單調性解不等式,屬于中檔題.4、D【解析】
畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結合即可得出.【詳解】解:函數(shù),如圖所示當時,,由于關于的不等式恰有1個整數(shù)解因此其整數(shù)解為3,又∴,,則當時,,則不滿足題意;當時,當時,,沒有整數(shù)解當時,,至少有兩個整數(shù)解綜上,實數(shù)的最大值為故選:D【點睛】本題主要考查了根據(jù)函數(shù)零點的個數(shù)求參數(shù)范圍,屬于較難題.5、C【解析】
利用線線、線面、面面相應的判定與性質來解決.【詳解】如果兩條平行線中一條垂直于這個平面,那么另一條也垂直于這個平面知①正確;當直線平行于平面與平面的交線時也有,,故②錯誤;若,則垂直平面內以及與平面平行的所有直線,故③正確;若,則存在直線且,因為,所以,從而,故④正確.故選:C.【點睛】本題考查空間中線線、線面、面面的位置關系,里面涉及到了相應的判定定理以及性質定理,是一道基礎題.6、D【解析】
由已知可得,結合向量數(shù)量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數(shù)量積運算,向量垂直的應用,考查計算求解能力,屬于基礎題.7、D【解析】
根據(jù)指數(shù)函數(shù)的單調性,即當?shù)讛?shù)大于1時單調遞增,當?shù)讛?shù)大于零小于1時單調遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數(shù),又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【點睛】這個題目考查的是應用不等式的性質和指對函數(shù)的單調性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質得到大小關系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關系.8、A【解析】
設,由得:,由復數(shù)相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數(shù)相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【點睛】本題考查共軛復數(shù)的求法,考查對復數(shù)相等的理解,考查復數(shù)在復平面對應的點,考查運算能力,屬于??碱}.9、A【解析】依題意有的周期為.而,故應左移.10、C【解析】
計算,由共軛復數(shù)的概念解得即可.【詳解】,又由共軛復數(shù)概念得:,.故選:C【點睛】本題主要考查了復數(shù)的運算,共軛復數(shù)的概念.11、B【解析】
根據(jù)題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當按照進行分配時,則有種不同的方案;當按照進行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點睛】本題考查排列組合、數(shù)學文化,還考查數(shù)學建模能力以及分類討論思想,屬于中檔題.12、C【解析】
分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計算滿足條件的種數(shù),利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數(shù)是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時取兩卦滿足條件的種數(shù)是,于是所求的概率.故選:C【點睛】本題考查了古典概型的應用,考查了學生綜合分析,分類討論,數(shù)學運算的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由三視圖還原原幾何體,該幾何體為四棱錐,底面為直角梯形,,,側棱底面,由棱錐體積公式求棱錐體積,由勾股定理求最長棱的長度.【詳解】由三視圖還原原幾何體如下圖所示:該幾何體為四棱錐,底面為直角梯形,,,側棱底面,則該幾何體的體積為,,,因此,該棱錐的最長棱的長度為.故答案為:;.【點睛】本題考查由三視圖求體積、棱長,關鍵是由三視圖還原原幾何體,是中檔題.14、10【解析】
根據(jù)垂直得到,代入計算得到答案.【詳解】,則,解得,故,故.故答案為:.【點睛】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學生的計算能力.15、1.【解析】試題分析:由題意,可看作五個位置排列五種事物,第一位置有五種排列方法,不妨假設排上的是金,則第二步只能從土與水兩者中選一種排放,故有兩種選擇不妨假設排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故總的排列方法種數(shù)有5×2×1×1×1=1.考點:排列、組合及簡單計數(shù)問題.點評:本題考查排列排列組合及簡單計數(shù)問題,解答本題關鍵是理解題設中的限制條件及“五行”學說的背景,利用分步原理正確計數(shù),本題較抽象,計數(shù)時要考慮周詳.16、【解析】
恰好有3個不同的零點恰有三個根,然后轉化成求函數(shù)值域即可.【詳解】解:恰好有3個不同的零點恰有三個根,令,,在遞增;,遞減,遞增,時,在有一個零點,在有2個零點;故答案為:.【點睛】已知函數(shù)的零點個數(shù)求參數(shù)的取值范圍是重點也是難點,這類題一般用分離參數(shù)的方法,中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)不能在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關;(2)①;②分布列見解析,,【解析】
(1)計算再對照表格分析即可.(2)①根據(jù)分層抽樣的方法可得經常使用信用卡的有人,偶爾或不用信用卡的有人,再根據(jù)超幾何分布的方法計算3人或4人偶爾或不用信用卡的概率即可.②利用二項分布的特點求解變量的分布列、數(shù)學期望和方差即可.【詳解】(1)由列聯(lián)表可知,,因為,所以不能在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關.(2)①依題意,可知所抽取的10名40歲及以下網(wǎng)民中,經常使用信用卡的有(人),偶爾或不用信用卡的有(人).則選出的4人中至少有3人偶爾或不用信用卡的概率.②由列聯(lián)表,可知40歲以上的網(wǎng)民中,抽到經常使用信用卡的頻率為,將頻率視為概率,即從市市民中任意抽取1人,恰好抽到經常使用信用卡的市民的概率為.由題意得,則,,,.故隨機變量的分布列為:0123故隨機變量的數(shù)學期望為,方差為.【點睛】本題主要考查了獨立性檢驗以及超幾何分布與二項分布的知識點,包括分類討論以及二項分布的數(shù)學期望與方差公式等.屬于中檔題.18、(1)(2)【解析】
(1)利用正弦,余弦定理對式子化簡求解即可;(2)利用余弦定理以及三角形的面積,求解三角形的周長即可.【詳解】(1),由正弦定理可得:,即:,由余弦定理得.(2)∵,所以,,又,且,,的周長為【點睛】本題考查正弦定理以及余弦定理的應用,三角形的面積公式,也考查計算能力,屬于基礎題.19、(1);(2)見解析;(3)見解析【解析】
(1)需滿足恒成立,只需即可;(2)根據(jù)的單調性,構造新函數(shù),并令,根據(jù)的單調性即可得證;(3)將問題轉化為證明有唯一實數(shù)解,對求導,判斷其單調性,結合題目條件與不等式的放縮,即可得證.【詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調遞減,在上單調遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實數(shù)解;當時,;當時,;即對于任意實數(shù),一定有解;;當時,有兩個極值點;函數(shù)在,,上單調遞增,在上單調遞減;又;只需,在時恒成立;只需;令,其中一個正解是;,;單調遞增,,(1);;;綜上得證.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調性,考查了利用導數(shù)證明不等式,考查了轉化思想、不等式的放縮,屬難題.20、(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點睛:本題主要考查正弦定理邊角互化及余弦定理的應用與特殊角的三角函數(shù),屬于簡單題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷庫拆卸合同范例
- 房屋評估委托合同模板
- 托管班招聘合同范例
- 建材廠轉租合同范例
- 工程保修、回訪服務方案
- 2024年內蒙古客運從業(yè)資格證下載什么軟件
- 2024年烏魯木齊客運從業(yè)資格證模擬考試題
- 2024年吉安小型客運從業(yè)資格證理論考試題
- 2024年黃岡道路客運駕駛員從業(yè)資格證考試題庫
- 2024年潮州客運從業(yè)資格證考試模擬題
- 大貓英語分級閱讀 四級1Tod and the Trumpet課件
- 唐詩三百首(全集)--鋼筆-字帖-打印版-辦公室練字必選
- 三字經全文帶拼音完整版----打印版
- 銷售配合與帶動課件
- 第八套廣播體操教案
- 股權結構圖模板
- 光刻工藝問答
- 航道工程學 第3章 航道整治工程 (2)
- wincc全套腳本總結
- 26《表示物質的符號》教學設計
- 淺談實習生的管理工作
評論
0/150
提交評論