



下載本文檔
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023學年高一數(shù)學人教A版第二章《基本初等函數(shù)》綜合練1.已知,則、的大小關系為(C)A. B. C. D.無法判斷2.當時,指數(shù)函數(shù)恒成立,則實數(shù)的取值范圍是(B)A.B.C.D.3.已知是定義在上的奇函數(shù),則的值是(C)A.0B.2C.1D.4.若函數(shù)=+與=的定義域均為R,則(D)A.與均為偶函數(shù)B.為奇函數(shù),為偶函數(shù)C.與均為奇函數(shù)D.為偶函數(shù).為奇函數(shù)5.函數(shù)的圖象(D)A.關于原點對稱B.關于直線對稱C.關于軸對稱D.關于軸對稱6.設是定義在實數(shù)集R上的函數(shù),且是偶函數(shù),當時,,則的大小關系是(C)A.B.C.D.7.設函數(shù)=若,則實數(shù)的取值范圍是(C)A.B.C.D.8.設,函數(shù),則使的的取值范圍是(C)A. B. C. D.9.已知函數(shù)若有則的取值范圍為(B)A.B.C.D.10.已知定義在R上的奇函數(shù)和偶函數(shù)滿足且,若,則=(B)A.2 B. C. D.11.設函數(shù),給出下述命題:①函數(shù)的值域為R;②函數(shù)有最小值;③當時,函數(shù)為偶函數(shù);④若在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍。正確的命題是(A)A.①③B.②③C.②④D.③④12.已知函數(shù)的定義域為,值域為,則等于(A)A. B. C.5 D.613.關于函數(shù),有下列命題:①其圖象關于軸對稱;②在上是增函數(shù);③的最大值為1;④對任意都可做為某一三角形的三邊長.其中正確的序號是(C)A.①③B.②③C.①④D.③④14.已知函數(shù),若函數(shù)的最小值為,則實數(shù)的值為.15.設為定義在R上的奇函數(shù),當時,為常數(shù)),則=_-3_____;當時,.16.若對任意的實數(shù)都有,則的取值范圍是______.17.設已知函數(shù),正實數(shù)m,n滿足,且,若在區(qū)間上的最大值為2,則.18.設函數(shù),,若,則實數(shù)的取值范圍是19.定義兩個實數(shù)間的一種新運算“*”:*().對于任意實數(shù),給出如下結論:=1\*GB3①;=2\*GB3②;=3\*GB3③;=4\*GB3④.其中正確的結論是①②③20.已知函數(shù)為定義在上的奇函數(shù),且當時,,求的解析式;(2)解不等式(1)(2)21.已知函數(shù),(1)求函數(shù)的定義域和值域;(2)設函數(shù),若不等式無解,求實數(shù)的取值范圍。解:(1)由得,所以定義域為,因為,所以值域為R。(2)因為=的定義域為,且在上是增函數(shù),所以函數(shù)的值域為若不等式無解,則的取值范圍為。22.已知函數(shù)滿足。(1)求常數(shù)的值;(2)求函數(shù)的值域。(1);(2)(1,]23.知定義在上的偶函數(shù)為常數(shù),(1)求的值;(2)用單調(diào)性定義證明在上是增函數(shù);(3)若關于的方程在上有且只有一個實根,求實數(shù)的取值范圍.解:(1)由得,所以對恒成立,所以(2)證明:由(1)得,任取,且則=由則所以在上是單調(diào)遞增函數(shù)(3)因為偶函數(shù)在上是單調(diào)遞增
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 門面房抵押合同范本
- 房屋租賃合同樣本參考
- 建設工程監(jiān)工合同書樣本
- 玉米購銷及技術服務合同協(xié)議
- 產(chǎn)業(yè)技術合作合同書
- 11《牛郎織女》 (二)(教學設計)-2024-2025學年語文五年級上冊統(tǒng)編版
- 農(nóng)業(yè)銀行商業(yè)房貸合同樣本
- 民用航空空運貨運代理合同協(xié)議
- 3《現(xiàn)代詩二首(秋晚的江上、花牛歌)》教學設計-2024-2025學年統(tǒng)編版語文四年級上冊
- 流動資金保證借款合同風險分析
- 野外生存2-1課件
- 《CAD/CAM技術基礎》全套教學課件
- 兒科影像診斷學課件
- tlc-jc dy001通信用高頻開關電源系統(tǒng)檢驗報告模板va
- 閥門噪聲計算程序(IEC)(帶公式)
- 2022年RDA5807m+IIC收音機51單片機C程序上課講義
- 雅馬哈貼片機_修機_調(diào)機的經(jīng)驗之談1
- 全自動咖啡機基本結構及原理教程課件
- 正負零以下基礎施工方案(44頁)
- 簡愛人物形象分析(課堂PPT)
- 義務教育《勞動》課程標準(2022年版)
評論
0/150
提交評論