2022-2023學年浙江省金華、麗水市中考數(shù)學模試卷含解析_第1頁
2022-2023學年浙江省金華、麗水市中考數(shù)學模試卷含解析_第2頁
2022-2023學年浙江省金華、麗水市中考數(shù)學模試卷含解析_第3頁
2022-2023學年浙江省金華、麗水市中考數(shù)學模試卷含解析_第4頁
2022-2023學年浙江省金華、麗水市中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是()A. B. C. D.2.2017年,山西省經(jīng)濟發(fā)展由“?!鞭D“興”,經(jīng)濟增長步入合理區(qū)間,各項社會事業(yè)發(fā)展取得顯著成績,全面建成小康社會邁出嶄新步伐.2018年經(jīng)濟總體保持平穩(wěn),第一季度山西省地區(qū)生產(chǎn)總值約為3122億元,比上年增長6.2%.數(shù)據(jù)3122億元用科學記數(shù)法表示為()A.3122×108元 B.3.122×103元C.3122×1011元 D.3.122×1011元3.小明要去超市買甲、乙兩種糖果,然后混合成5千克混合糖果,已知甲種糖果的單價為a元/千克,乙種糖果的單價為b元/千克,且a>b.根據(jù)需要小明列出以下三種混合方案:(單位:千克)甲種糖果乙種糖果混合糖果方案1235方案2325方案32.52.55則最省錢的方案為()A.方案1 B.方案2C.方案3 D.三個方案費用相同4.數(shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.35.義安區(qū)某中學九年級人數(shù)相等的甲、乙兩班學生參加同一次數(shù)學測試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定6.甲、乙兩人加工一批零件,甲完成240個零件與乙完成200個零件所用的時間相同,已知甲比乙每天多完成8個零件.設乙每天完成x個零件,依題意下面所列方程正確的是()A. B.C. D.7.若,則的值為()A.12 B.2 C.3 D.08.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④9.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以OC為對稱軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過點A′、B,則k的值是()A.9 B. C. D.310.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形二、填空題(本大題共6個小題,每小題3分,共18分)11.若x,y為實數(shù),y=,則4y﹣3x的平方根是____.12.七邊形的外角和等于_____.13.等腰中,是BC邊上的高,且,則等腰底角的度數(shù)為__________.14.關于x的分式方程=2的解為正實數(shù),則實數(shù)a的取值范圍為_____.15.若a、b為實數(shù),且b=+4,則a+b=_____.16.因式分解:_________________.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,AC=3,BC=1.若以C為圓心,R為半徑所作的圓與斜邊AB只有一個公共點,則R的取值范圍是多少?18.(8分)如圖,已知:正方形ABCD,點E在CB的延長線上,連接AE、DE,DE與邊AB交于點F,F(xiàn)G∥BE交AE于點G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長;(3)在BC邊上取點M,使得BM=BE,連接AM交DE于點O.求證:FO?ED=OD?EF.19.(8分)(1)解方程:x2x-3+5(2)解不等式組并把解集表示在數(shù)軸上:3x-1220.(8分)計算:|﹣|﹣﹣(2﹣π)0+2cos45°.解方程:=1﹣21.(8分)如圖,在平面直角坐標系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標軸交于A,B,C三點,其中點B的坐標為(1,0),點C的坐標為(0,4);點D的坐標為(0,2),點P為二次函數(shù)圖象上的動點.(1)求二次函數(shù)的表達式;(2)當點P位于第二象限內(nèi)二次函數(shù)的圖象上時,連接AD,AP,以AD,AP為鄰邊作平行四邊形APED,設平行四邊形APED的面積為S,求S的最大值;(3)在y軸上是否存在點F,使∠PDF與∠ADO互余?若存在,直接寫出點P的橫坐標;若不存在,請說明理由.22.(10分)一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.求口袋中黃球的個數(shù);甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;23.(12分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF(1)判斷AF與⊙O的位置關系并說明理由;(2)若⊙O的半徑為4,AF=3,求AC的長.24.如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC交于點F.(1)求證:FD=CD;(2)若AE=8,tan∠E=34

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:A.是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項錯誤;C.是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項正確.故選D.考點:軸對稱圖形.2、D【解析】

可以用排除法求解.【詳解】第一,根據(jù)科學記數(shù)法的形式可以排除A選項和C選項,B選項明顯不對,所以選D.【點睛】牢記科學記數(shù)法的規(guī)則是解決這一類題的關鍵.3、A【解析】

求出三種方案混合糖果的單價,比較后即可得出結論.【詳解】方案1混合糖果的單價為,方案2混合糖果的單價為,方案3混合糖果的單價為.∵a>b,∴,∴方案1最省錢.故選:A.【點睛】本題考查了加權平均數(shù),求出各方案混合糖果的單價是解題的關鍵.4、A【解析】

眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.5、B【解析】

根據(jù)方差的意義,方差反映了一組數(shù)據(jù)的波動大小,故可由兩人的方差得到結論.【詳解】∵S甲2>S乙2,∴成績較為穩(wěn)定的是乙班。故選:B.【點睛】本題考查了方差,解題的關鍵是掌握方差的概念進行解答.6、B【解析】

根據(jù)題意設出未知數(shù),根據(jù)甲所用的時間=乙所用的時間,用時間列出分式方程即可.【詳解】設乙每天完成x個零件,則甲每天完成(x+8)個.即得,,故選B.【點睛】找出甲所用的時間=乙所用的時間這個關系式是本題解題的關鍵.7、A【解析】

先根據(jù)得出,然后利用提公因式法和完全平方公式對進行變形,然后整體代入即可求值.【詳解】∵,∴,∴.故選:A.【點睛】本題主要考查整體代入法求代數(shù)式的值,掌握完全平方公式和整體代入法是解題的關鍵.8、D【解析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當四邊形是菱形時,②和④成立.故選D.9、C【解析】

設B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據(jù)相似三角形或銳角三角函數(shù)可求得A′(,),根據(jù)反比例函數(shù)性質k=xy建立方程求k.【詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點睛】本題是反比例函數(shù)綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數(shù)點的坐標特征、相似三角形、翻折等,解題關鍵是通過設點B的坐標,表示出點A′的坐標.10、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念結合矩形、平行四邊形、直角梯形、正五邊形的性質求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖形重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、±【解析】∵與同時成立,∴故只有x2﹣4=0,即x=±2,又∵x﹣2≠0,∴x=﹣2,y==﹣,4y﹣3x=﹣1﹣(﹣6)=5,∴4y﹣3x的平方根是±.故答案:±.12、360°【解析】

根據(jù)多邊形的外角和等于360度即可求解.【詳解】解:七邊形的外角和等于360°.故答案為360°【點睛】本題考查了多邊形的內(nèi)角和外角的知識,屬于基礎題,解題的關鍵是掌握多邊形的外角和等于360°.13、,,【解析】

分三種情況:①點A是頂角頂點時,②點A是底角頂點,且AD在△ABC外部時,③點A是底角頂點,且AD在△ABC內(nèi)部時,再結合直角三角形中,30°的角所對的直角邊等于斜邊的一半即可求解.【詳解】①如圖,若點A是頂角頂點時,∵AB=AC,AD⊥BC,∴BD=CD,∵,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=;②如圖,若點A是底角頂點,且AD在△ABC外部時,∵,AC=BC,∴,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如圖,若點A是底角頂點,且AD在△ABC內(nèi)部時,∵,AC=BC,∴,∴∠C=30°,∴∠BAC=∠ABC=(180°-30°)=75°;綜上所述,△ABC底角的度數(shù)為45°或15°或75°;故答案為,,.【點睛】本題考查了等腰三角形的性質和直角三角形中30°的角所對的直角邊等于斜邊的一半的性質,解題的關鍵是要分情況討論.14、a<2且a≠1【解析】

將a看做已知數(shù),表示出分式方程的解,根據(jù)解為非負數(shù)列出關于a的不等式,求出不等式的解集即可得到a的范圍.【詳解】分式方程去分母得:x+a-2a=2(x-1),解得:x=2-a,∵分式方程的解為正實數(shù),∴2-a>0,且2-a≠1,解得:a<2且a≠1.故答案為:a<2且a≠1.【點睛】分式方程的解.15、5或1【解析】

根據(jù)二次根式的性質和分式的意義,被開方數(shù)大于或等于0,分母不等于0,可以求出a的值,b的值,根據(jù)有理數(shù)的加法,可得答案.【詳解】由被開方數(shù)是非負數(shù),得,解得a=1,或a=﹣1,b=4,當a=1時,a+b=1+4=5,當a=﹣1時,a+b=﹣1+4=1,故答案為5或1.【點睛】本題考查了函數(shù)表達式有意義的條件,當函數(shù)表達式是整式時,自變量可取全體實數(shù);當函數(shù)表達式是分式時,考慮分式的分母不能為0;當函數(shù)表達式是二次根式時,被開方數(shù)非負.16、【解析】

提公因式法和應用公式法因式分解.【詳解】解:.故答案為:【點睛】本題考查因式分解,要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.三、解答題(共8題,共72分)17、R=125或R=【解析】

解:當圓與斜邊相切時,則R=125,即圓與斜邊有且只有一個公共點,當R=12考點:圓與直線的位置關系.18、(1)證明見解析;(2)AG=;(3)證明見解析.【解析】

(1)根據(jù)正方形的性質得到AD∥BC,AB∥CD,AD=CD,根據(jù)相似三角形的性質列出比例式,等量代換即可;(2)根據(jù)勾股定理求出AE,根據(jù)相似三角形的性質計算即可;(3)延長GF交AM于H,根據(jù)平行線分線段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代換得到,即,于是得到結論.【詳解】解:(1)∵四邊形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴=4,AE=,∴=4,∴AG=;(3)延長GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,,∴,∴,∴FO?ED=OD?EF.【點睛】本題主要考查平行線分線段成比例及正方形的性質,掌握平行線分線段中的線段對應成比例是解題的關鍵,注意利用比例相等也可以證明線段相等.19、(1)x=1(2)4<x≤415【解析】

(1)先將整理方程再乘以最小公分母移項合并即可;(2)求出每個不等式的解集,根據(jù)找不等式組解集的規(guī)律找出即可.【詳解】(1)+=4,方程整理得:=4,去分母得:x﹣5=4(2x﹣3),移項合并得:7x=7,解得:x=1;經(jīng)檢驗x=1是分式方程的解;(2)解①得:x≤解②得:x>4∴不等式組的解集是4<x≤,在數(shù)軸上表示不等式組的解集為:.【點睛】本題考查了解一元二次方程組與分式方程,解題的關鍵是熟練的掌握解一元二次方程組與分式方程運算法則.20、(1)﹣1;(2)x=﹣1是原方程的根.【解析】

(1)直接化簡二次根式進而利用零指數(shù)冪的性質以及特殊角三角函數(shù)值進而得出答案;(2)直接去分母再解方程得出答案.【詳解】(1)原式=﹣2﹣1+2×=﹣﹣1+=﹣1;(2)去分母得:3x=x﹣3+1,解得:x=﹣1,檢驗:當x=﹣1時,x﹣3≠0,故x=﹣1是原方程的根.【點睛】此題主要考查了實數(shù)運算和解分式方程,正確掌握解分式方程的方法是解題關鍵.21、(1)y=﹣x2﹣3x+4;(2)當時,S有最大值;(3)點P的橫坐標為﹣2或1或或.【解析】

(1)將代入,列方程組求出b、c的值即可;(2)連接PD,作軸交于點G,求出直線的解析式為,設,則,,,當時,S有最大值;(3)過點P作軸,設,則,,根據(jù),列出關于x的方程,解之即可.【詳解】解:(1)將、代入,,∴二次函數(shù)的表達式;(2)連接,作軸交于點,如圖所示.在中,令y=0,得,∴直線AD的解析式為.設,則,,∴.,∴當時,S有最大值.(3)過點P作軸,設,則,,,即,當點P在y軸右側時,,,或,(舍去)或(舍去),當點P在y軸左側時,x<0,,或,(舍去),或(舍去),綜上所述,存在點F,使與互余點P的橫坐標為或或或.【點睛】本題是二次函數(shù),熟練掌握相似三角形的判定與性質、平行四邊形的性質以及二次函數(shù)圖象的性質等是解題的關鍵.22、(1)1;(2)【解析】

(1)設口袋中黃球的個數(shù)為x個,根據(jù)從中任意摸出一個球是紅球的概率為和概率公式列出方程,解方程即可求得答案;(2)根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案;【詳解】解:(1)設口袋中黃球的個數(shù)為個,根據(jù)題意得:解得:=1經(jīng)檢驗:=1是原分式方程的解∴口袋中黃球的個數(shù)為1個(2)畫樹狀圖得:∵共有12種等可能的結果,兩次摸出都是紅球的有2種情況∴兩次摸出都是紅球的概率為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.23、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據(jù)切線的性質得出∠OCF=90°,證出∠OAF=90°,即可得出結論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論