2023年上海電子信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年上海電子信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年上海電子信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年上海電子信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年上海電子信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩34頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年上海電子信息職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.一個(gè)十二面體共有8個(gè)頂點(diǎn),其中2個(gè)頂點(diǎn)處各有6條棱,其它頂點(diǎn)處都有相同的棱,則其它頂點(diǎn)處的棱數(shù)為______.答案:此十二面體如右圖,數(shù)形結(jié)合可得則其它頂點(diǎn)處的棱數(shù)為4故為42.集合A={1,2}的子集有幾個(gè)()A.2B.4C.3D.1答案:集合A={1,2}的子集有:?,{2},{1},{2,1}共4個(gè).故選B.3.已知原點(diǎn)O(0,0),則點(diǎn)O到直線4x+3y+5=0的距離等于

______.答案:利用點(diǎn)到直線的距離公式得到d=|5|42+32=1,故為1.4.“a>2且b>2”是“a+b>4且ab>4”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既不充分也不必要條件答案:若a>2且b>2,則必有a+b>4且ab>4成立,故充分性易證若a+b>4且ab>4,如a=8,b=1,此時(shí)a+b>4且ab>4成立,但不能得出a>2且b>2,故必要性不成立由上證明知“a>2且b>2”是“a+b>4且ab>4”的充分不必要條件,故選A5.已知向量a=(-2,1),b=(-3,-1),若單位向量c滿足c⊥(a+b),則c=______.答案:設(shè)c=(x,y),∵向量a=(-2,1),b=(-3,-1),單位向量c滿足c⊥(a+b),∴c?a+c?b=0,∴-2x+y-3x-y=0,解得x=0,∴c=(0,y),∵c是單位向量,∴0+y2=1,∴y=±1.故c=(0,1),或c=(0,-1).故為:(0,1)或(0,-1).6.設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.7.已知2,4,2x,4y四個(gè)數(shù)的平均數(shù)是5而5,7,4x,6y四個(gè)數(shù)的平均數(shù)是9,則xy的值是______.答案:因?yàn)?,4,2x,4y四個(gè)數(shù)的平均數(shù)是5,則2+4+2x+4y=4×5,又由5,7,4x,6y四個(gè)數(shù)的平均數(shù)是9,則5+7+4x+6y=4×9,x與y滿足的關(guān)系式為x+2y=72x+3y=12解得x=3y=2故為6.8.設(shè)a,b,c都是正數(shù),求證:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:證明略解析:證明

(1)∵a,b,c都是正數(shù),∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當(dāng)且僅當(dāng)a=b=c時(shí),等號(hào)成立.9.在直角坐標(biāo)系中,x=-1+3cosθy=2+3sinθ,θ∈[0,2π],所表示曲線的解析式是:______.答案:由題意并根據(jù)cos2θ+sin2θ=1

可得,(x+13)2+(y-23)2=1,即(x+1)2+(y-2)2=9,故為(x+1)2+(y-2)2=9.解析:在直角坐標(biāo)系中,10.若數(shù)列{an}是等差數(shù)列,對(duì)于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比上述性質(zhì),若數(shù)列{cn}是各項(xiàng)都為正數(shù)的等比數(shù)列,對(duì)于dn>0,則dn=______時(shí),數(shù)列{dn}也是等比數(shù)列.答案:在類比等差數(shù)列的性質(zhì)推理等比數(shù)列的性質(zhì)時(shí),我們一般的思路有:由加法類比推理為乘法,由減法類比推理為除法,由算術(shù)平均數(shù)類比推理為幾何平均數(shù)等,故我們可以由數(shù)列{cn}是等差數(shù)列,則對(duì)于bn=1n(a1+a2+…+an),則數(shù)列{bn}也是等差數(shù)列.類比推斷:若數(shù)列{cn}是各項(xiàng)均為正數(shù)的等比數(shù)列,則當(dāng)dn=nC1C2C3Cn時(shí),數(shù)列{dn}也是等比數(shù)列.故為:nC1C2C3Cn11.求證:梯形兩條對(duì)角線的中點(diǎn)連線平行于上、下底,且等于兩底差的一半(用解析法證之).答案:證明見過程解析:求證:梯形兩條對(duì)角線的中點(diǎn)連線平行于上、下底,且等于兩底差的一半(用解析法證之).12.在正方體ABCD-A1B1C1D1中,若E為A1C1中點(diǎn),則直線CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A為原點(diǎn),AB、AD、AA1所在直線分別為x,y,z軸建空間直角坐標(biāo)系,設(shè)正方體棱長為1,則A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),顯然CE?BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.

故選B.13.由小正方體木塊搭成的幾何體的三視圖如圖所示,則搭成該幾何體的小正方體木塊有()

A.6塊

B.7塊

C.8塊

D.9塊答案:B14.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個(gè)大于1.答案:證明:用反證法,假設(shè)x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個(gè)大于1,即原命題得證.15.扇形周長為10,則扇形面積的最大值是()A.52B.254C.252D.102答案:設(shè)半徑為r,弧長為l,則周長為2r+l=10,面積為s=12lr,因?yàn)?0=2r+l≥22rl,所以rl≤252,所以s≤254故選B16.直線y=3x+1的斜率是()A.1B.2C.3D.4答案:因?yàn)橹本€y=3x+1是直線的斜截式方程,所以直線的斜率是3.故選C.17.若對(duì)n個(gè)向量a1,a2,…,an,存在n個(gè)不全為零的實(shí)數(shù)k1,k2…,kn,使得k1a1+k2a2+…+knan=0成立,則稱向量a1,a2,…,an為“線性相關(guān)”.依此規(guī)定,請你求出一組實(shí)數(shù)k1,k2,k3的值,它能說明a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.k1,k2,k3的值分別是______(寫出一組即可).答案:設(shè)a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”.則存在實(shí)數(shù),k1,k2,k3,使k1a1+k2a2+k3a3=0∵a1=(1,0),a2=(1,-1),a3=(2,2)∴k1+k2+2k3=0,且-k2+2k3=0令k3=1,則k2=2,k1=-4故為:-4,2,118.與原數(shù)據(jù)單位不一樣的是()

A.眾數(shù)

B.平均數(shù)

C.標(biāo)準(zhǔn)差

D.方差答案:D19.如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°20.(理)已知向量=(3,5,-1),=(2,2,3),=(4,-1,-3),則向量2-3+4的坐標(biāo)為()

A.(16,0,-23)

B.(28,0,-23)

C.(16,-4,-1)

D.(0,0,9)答案:A21.實(shí)數(shù)系的結(jié)構(gòu)圖如圖所示,其中1、2、3三個(gè)方格中的內(nèi)容分別為()

A.有理數(shù)、零、整數(shù)

B.有理數(shù)、整數(shù)、零

C.零、有理數(shù)、整數(shù)

D.整數(shù)、有理數(shù)、零

答案:B22.已知a,b,c是空間的一個(gè)基底,且實(shí)數(shù)x,y,z使xa+yb+zc=0,則x2+y2+z2=______.答案:∵a,b,c是空間的一個(gè)基底∴a,b,c兩兩不共線∵xa+yb+zc=0∴x=y=z=0∴x2+y2+z2=0故為:023.點(diǎn)P從(2,0)出發(fā),沿圓x2+y2=4按逆時(shí)針方向運(yùn)動(dòng)弧長到達(dá)點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為()

A.(-1,

)

B.(-,

-1)

C.(-1,

-)

D.(-,

1)答案:C24.用“輾轉(zhuǎn)相除法”求得和的最大公約數(shù)是(

)A.B.C.D.答案:D解析:是和的最大公約數(shù),也就是和的最大公約數(shù)25.下列圖形中不一定是平面圖形的是()

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B26.已知雙曲線的頂點(diǎn)到漸近線的距離為2,焦點(diǎn)到漸近線的距離為6,則該雙曲線的離心率為

______.答案:如圖,過雙曲線的頂點(diǎn)A、焦點(diǎn)F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為327.以拋物線y2=2px(p>0)的焦半徑|PF|為直徑的圓與y軸位置關(guān)系是______.答案:根據(jù)拋物線定義可知|PF|=p2,而圓的半徑為p2,圓心為(p2,0),|PF|正好等于所求圓的半徑,進(jìn)而可推斷圓與y軸位置關(guān)系是相切.28.若矩陣滿足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為()

A.24

B.48

C.144

D.288答案:C29.已知兩點(diǎn)A(2,1),B(3,3),則直線AB的斜率為()

A.2

B.

C.

D.-2答案:A30.若命題P(n)對(duì)n=k成立,則它對(duì)n=k+2也成立,又已知命題P(2)成立,則下列結(jié)論正確的是()

A.P(n)對(duì)所有自然數(shù)n都成立

B.P(n)對(duì)所有正偶數(shù)n成立

C.P(n)對(duì)所有正奇數(shù)n都成立

D.P(n)對(duì)所有大于1的自然數(shù)n成立答案:B31.已知sint+cost=1,設(shè)s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0則cost=0,sint=1或cost=1,sint=0,當(dāng)cost=0,sint=1時(shí),s=cost+isint=i則f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)當(dāng)cost=1,sint=0時(shí),s=cost+isint=1則f(s)=1+s+s2+…sn=n+132.下表是降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)應(yīng)數(shù)據(jù),根據(jù)表中提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.y=0.7x+0.35,那么表中m的值為______.

x3456y2.5m44.5答案:∵根據(jù)所給的表格可以求出.x=3+4+5+64=4.5,.y=2.5+m+4+4.54=11+m4∵這組數(shù)據(jù)的樣本中心點(diǎn)在線性回歸直線上,∴11+m4=0.7×4.5+0.35,∴m=3,故為:333.袋子A和袋子B均裝有紅球和白球,從A中摸出一個(gè)紅球的概率是13,從B中摸出一個(gè)紅球的概率是P.

(1)從A中有放回地摸球,每次摸出一個(gè),共摸5次,求恰好有3次摸到紅球的概率;

(2)若A、B兩個(gè)袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率為25,求P的值.答案:(1)每次從A中摸一個(gè)紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個(gè)球,A、B兩個(gè)袋子中的球數(shù)之比為1:2,則B中有2m個(gè)球,∵將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是25,∴13m+2mp3m=25,解得p=1330.34.為了了解某地母親身高x與女兒身高Y的相關(guān)關(guān)系,隨機(jī)測得10對(duì)母女的身高如下表所示:

母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計(jì)算x與Y的相關(guān)系數(shù)r≈0.71,通過查表得r的臨界值r0.05=0.632,從而有______的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計(jì)算得到回歸直線方程為y═34.92+0.78x,因此,當(dāng)母親的身高為161cm時(shí),可以估計(jì)女兒的身高大致為______.答案:查對(duì)臨界值表,由臨界值r0.05=0.632,可得有95%的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=34.92+0.78x,因此,當(dāng)x=161cm時(shí),y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.35.管理人員從一池塘中撈出30條魚做上標(biāo)記,然后放回池塘,將帶標(biāo)記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標(biāo)記的魚有2條.根據(jù)以上收據(jù)可以估計(jì)該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.36.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},則A∩B=()

A.{2,1}

B.{(2,1)}

C.{1,2}

D.{(1,2)}答案:D37.ab>0,則①|(zhì)a+b|>|a|②|a+b|<|b|③|a+b|<|a-b|④|a+b|>|a-b|四個(gè)式中正確的是()

A.①②

B.②③

C.①④

D.②④答案:C38.設(shè)集合A和B都是自然數(shù)集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C39.從單詞“equation”選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”相連且順序不變)的不同排列共有()A.120個(gè)B.480個(gè)C.720個(gè)D.840個(gè)答案:要選取5個(gè)字母時(shí)首先從其它6個(gè)字母中選3個(gè)有C63種結(jié)果,再與“qu“組成的一個(gè)元素進(jìn)行全排列共有C63A44=480,故選B.40.已知函數(shù)f(x)滿足:f(p+q)=f(p)f(q),f(1)=2,則:f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=______答案:∵f(p+q)=f(p)f(q),∴f(p+1)=f(p)f(1)即f(p+1)f(p)=f(1)=2,∴f(2)f(1)=2,f(4)f(3)=2…f(2006)f(2005)=2即f(2)f(1)+f(4)f(3)+f(6)f(5)+f(8)f(7)+…+f(2006)f(2005)=2×1003=2006故為:200641.在15個(gè)村莊中有7個(gè)村莊交通不方便,現(xiàn)從中任意選10個(gè)村莊,用X表示這10個(gè)村莊中交通不方便的村莊數(shù),則P(X=4)=______.(用數(shù)字表示)答案:由題意P(X=4)=C47×C68C1015=7×6×53×2×1×8×72×115×14×13×12×115×4×3×2×1=140429故為:14042942.命題“p:任意x∈R,都有x≥2”的否定是______.答案:命題“任意x∈R,都有x≥2”是全稱命題,否定時(shí)將量詞對(duì)任意的x∈R變?yōu)榇嬖趯?shí)數(shù)x,再將不等號(hào)≥變?yōu)椋技纯桑蕿椋捍嬖趯?shí)數(shù)x,使得x<2.43.已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)為A(1,3)、B(-1,-1)、C(-3,5),求這個(gè)三角形外接圓的方程.答案:設(shè)圓的方程為(x-a)2+(y-b)2=r2,則(1-a)2+(3-b)2=r2(-1-a)2+(-1-b)2=r2(-3-a)2+(5-b)2=r2,整理得a+2b-2=02a-b+6=0,解之得a=-2,b=2,可得r2=10,因此,這個(gè)三角形外接圓的方程為(x+2)2+(y-2)2=10.44.如圖,半徑為R的球O中有一內(nèi)接圓柱.當(dāng)圓柱的側(cè)面積最大時(shí),球的表面積與該圓柱的側(cè)面積之差是______.

答案:設(shè)圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當(dāng)且僅當(dāng)α=π4時(shí),sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR245.極坐標(biāo)方程pcosθ=表示()

A.一條平行于x軸的直線

B.一條垂直于x軸的直線

C.一個(gè)圓

D.一條拋物線答案:B46.已知菱形ABCD的頂點(diǎn)A,C在橢圓x2+3y2=4上,對(duì)角線BD所在直線的斜率為1.

(Ⅰ)當(dāng)直線BD過點(diǎn)(0,1)時(shí),求直線AC的方程;

(Ⅱ)當(dāng)∠ABC=60°時(shí),求菱形ABCD面積的最大值.答案:(Ⅰ)由題意得直線BD的方程為y=x+1.因?yàn)樗倪呅蜛BCD為菱形,所以AC⊥BD.于是可設(shè)直線AC的方程為y=-x+n.由x2+3y2=4y=-x+n得4x2-6nx+3n2-4=0.因?yàn)锳,C在橢圓上,所以△=-12n2+64>0,解得-433<n<433.設(shè)A,C兩點(diǎn)坐標(biāo)分別為(x1,y1),(x2,y2),則x1+x2=3n2,x1x2=3n2-44,y1=-x1+n,y2=-x2+n.所以y1+y2=n2.所以AC的中點(diǎn)坐標(biāo)為(3n4,n4).由四邊形ABCD為菱形可知,點(diǎn)(3n4,n4)在直線y=x+1上,所以n4=3n4+1,解得n=-2.所以直線AC的方程為y=-x-2,即x+y+2=0.(Ⅱ)因?yàn)樗倪呅蜛BCD為菱形,且∠ABC=60°,所以|AB|=|BC|=|CA|.所以菱形ABCD的面積S=32|AC|2.由(Ⅰ)可得|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,所以S=34(-3n2+16)(-433<n<433).所以當(dāng)n=0時(shí),菱形ABCD的面積取得最大值43.47.某地區(qū)居民生活用電分為高峰和低谷兩個(gè)時(shí)間段進(jìn)行分時(shí)計(jì)價(jià).該地區(qū)的電網(wǎng)銷售電價(jià)表如圖:高峰時(shí)間段用電價(jià)格表低谷時(shí)間段用電價(jià)格表高峰月用電量

(單位:千瓦時(shí))高峰電價(jià)(單位:元/千瓦時(shí))低谷月用電量

(單位:千瓦時(shí))低谷電價(jià)(單位:

元/千瓦時(shí))50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時(shí)間段用電量為200千瓦時(shí),低谷時(shí)間段用電量為100千瓦時(shí),則按這種計(jì)費(fèi)方式該家庭本月應(yīng)付的電費(fèi)為______元(用數(shù)字作答)答案:高峰時(shí)間段用電的電費(fèi)為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時(shí)間段用電的電費(fèi)為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費(fèi)為118.1+30.3=148.4(元),故為:148.4.48.用0.618法確定的試點(diǎn),則經(jīng)過(

)次試驗(yàn)后,存優(yōu)范圍縮小為原來的0.6184倍.答案:549.對(duì)于實(shí)數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.50.三棱錐P-ABC中,M為BC的中點(diǎn),以為基底,則可表示為()

A.

B.

C.

D.答案:D第2卷一.綜合題(共50題)1.用反證法證明命題“如果a>b,那么a3>b3“時(shí),下列假設(shè)正確的是()

A.a(chǎn)3<b3

B.a(chǎn)3<b3或a3=b3

C.a(chǎn)3<b3且a3=b3

D.a(chǎn)3>b3答案:B2.若函數(shù)y=ax(a>1)在[0,1]上的最大值與最小值之和為3,則a=______.答案:①當(dāng)0<a<1時(shí)函數(shù)y=ax在[0,1]上為單調(diào)減函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為1,a∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2(舍)②當(dāng)a>1時(shí)函數(shù)y=ax在[0,1]上為單調(diào)增函數(shù)∴函數(shù)y=ax在[0,1]上的最大值與最小值分別為a,1∵函數(shù)y=ax在[0,1]上的最大值與最小值和為3∴1+a=3∴a=2故為:2.3.函數(shù)y=ax2+1的圖象與直線y=x相切,則a=______.答案:設(shè)切點(diǎn)為(x0,y0),∵y′=2ax,∴k=2ax0=1,①又∵點(diǎn)(x0,y0)在曲線與直線上,即y0=ax20+1y0=x0,②由①②得a=14.故為14.4.把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____答案:(2,-2)解析:把函數(shù)y=4x的圖象按平移到F′,F′的函數(shù)解析式為y=4x-2-2,則向量的坐標(biāo)等于_____5.將6位志愿者分成4組,每組至少1人,分赴世博會(huì)的四個(gè)不同場館服務(wù),不同的分配方案有______種(用數(shù)字作答).答案:由題意,六個(gè)人分為四組,若有三個(gè)人一組,則四組人數(shù)為3,1,1,1,則不同的分法為C63=20種,若存在兩人一組,則分法為2,2,1,1,不同的分法有C26×C24A22=45分赴世博會(huì)的四個(gè)不同場館服務(wù),不同的分配方案有(20+45)×A44=1560種故為:1560.6.三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為n1,n2,若<n1,n2>=,則二面角A-BD-C的大小為()

A.

B.

C.或

D.或答案:C7.已知點(diǎn)P為△ABC所在平面上的一點(diǎn),且,其中t為實(shí)數(shù),若點(diǎn)P落在△ABC的內(nèi)部,則t的取值范圍是()

A.

B.

C.

D.答案:D8.用隨機(jī)數(shù)表法從100名學(xué)生(男生35人)中選20人作樣本,男生甲被抽到的可能性為()A.15B.2035C.35100D.713答案:由題意知,本題是一個(gè)等可能事件的概率,試驗(yàn)發(fā)生包含的事件是用隨機(jī)數(shù)表法從100名學(xué)生選一個(gè),共有100種結(jié)果,滿足條件的事件是抽取20個(gè),∴根據(jù)等可能事件的概率公式得到P=20100=15,故選A.9.如圖,PA,PB切⊙O于

A,B兩點(diǎn),AC⊥PB,且與⊙O相交于

D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因?yàn)榇怪薄螪CB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°10.直角坐標(biāo)xOy平面上,平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有()

A.25個(gè)

B.36個(gè)

C.100個(gè)

D.225個(gè)答案:D11.設(shè)集合A和B都是自然數(shù)集合N,映射f:A→B把集合A中的元素n映射到集合B中的元素2n+n,則在映射f下,象20的原象是()A.2B.3C.4D.5答案:由2n+n=20求n,用代入法可知選C.故選C12.若隨機(jī)變量X~B(n,0.6),且E(X)=3,則P(X=1)的值是()

A.2×0.44

B.2×0.45

C.3×0.44

D.3×0.64答案:C13.(1)若三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點(diǎn),則k的值為?

(2)若α∈N,又三點(diǎn)A(α,0),B(0,α+4),C(1,3)共線,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直線2x+3y+8=0和x-y-1=0的交點(diǎn)為(-1,-2).∵三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點(diǎn),∴(-1,-2)在直線x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三點(diǎn)共線,說明直線AB與直線AC的斜率相等∴a+4-00-a=3-01-a,解得:a=214.直線(t為參數(shù))的傾斜角等于()

A.

B.

C.

D.答案:A15.設(shè)求證:答案:證明見解析解析:證明:∵

∴∴,∴本題利用,對(duì)中每項(xiàng)都進(jìn)行了放縮,從而得到可以求和的數(shù)列,達(dá)到化簡的目的。16.盒中有10只螺絲釘,其中有3只是壞的,現(xiàn)從盒中隨機(jī)地抽取4只,那么310為()A.恰有1只壞的概率B.恰有2只好的概率C.4只全是好的概率D.至多2只壞的概率答案:∵盒中有10只螺絲釘∴盒中隨機(jī)地抽取4只的總數(shù)為:C104=210,∵其中有3只是壞的,∴所可能出現(xiàn)的事件有:恰有1只壞的,恰有2只壞的,恰有3只壞的,4只全是好的,至多2只壞的取法數(shù)分別為:C31×C73=105,C32C72=63,C74=35,C74+C31×C73+C32×C72=203∴恰有1只壞的概率分別為:105210=12,,恰有2只好的概率為63210=310,,4只全是好的概率為35210=16,至多2只壞的概率為203210=2930;故A,C,D不正確,B正確故選B17.拋物線y=3x2的焦點(diǎn)坐標(biāo)是______.答案:化為標(biāo)準(zhǔn)方程為x2=13y,∴2p=13,∴p2=

112,∴焦點(diǎn)坐標(biāo)是(0,112).故為(0,112)18.長為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上移動(dòng),,則點(diǎn)C的軌跡是()

A.線段

B.圓

C.橢圓

D.雙曲線答案:C19.已知=(3,4),=(5,12),與則夾角的余弦為()

A.

B.

C.

D.答案:A20.全稱命題“任意x∈Z,2x+1是整數(shù)”的逆命題是()

A.若2x+1是整數(shù),則x∈Z

B.若2x+1是奇數(shù),則x∈Z

C.若2x+1是偶數(shù),則x∈Z

D.若2x+1能被3整除,則x∈Z

E.若2x+1是整數(shù),則x∈Z答案:A21.已知拋物線y2=4x上兩定點(diǎn)A、B分別在對(duì)稱軸兩側(cè),F(xiàn)為焦點(diǎn),且|AF|=2,|BF|=5,在拋物線的AOB一段上求一點(diǎn)P,使S△ABP最大,并求面積最大值.答案:不妨設(shè)點(diǎn)A在第一象限,B點(diǎn)在第四象限.如圖.拋物線的焦點(diǎn)F(1,0),點(diǎn)A在第一象限,設(shè)A(x1,y1),y1>0,由|FA|=2得x1+1=2,x1=1,代入y2=4x中得y1=2,所以A(1,2),…(2分);同理B(4,-4),…(4分)由A(1,2),B(4,-4)得|AB|=(1-4)2+(2+4)2=35…(6分)直線AB的方程為y-2-4-2=x-14-1,化簡得2x+y-4=0.…(8分)再設(shè)在拋物線AOB這段曲線上任一點(diǎn)P(x0,y0),且0≤x0≤4,-4≤y0≤2.則點(diǎn)P到直線AB的距離d=|2x0+y0-4|1+4=|2×y0

24+y0-4|5=|12(y0+1)2-92|5

…(9分)所以當(dāng)y0=-1時(shí),d取最大值9510,…(10分)所以△PAB的面積最大值為S=12×35×9510=274

…(11分)此時(shí)P點(diǎn)坐標(biāo)為(14,-1).…(12分).22.已知直線的傾斜角為α,且cosα=45,則此直線的斜率是______.答案:∵直線l的傾斜角為α,cosα=45,∴α的終邊在第一象限,故sinα=35故l的斜率為tanα=sinαcosα=34故為:3423.隨機(jī)變量X的概率分布規(guī)律為P(X=n)=(n=1,2,3,4),其中a是常數(shù),則P()的值為()

A.

B.

C.

D.

答案:D24.方程ax2+2x+1=0至少有一個(gè)負(fù)的實(shí)根的充要條件是()

A.0<a≤1

B.a(chǎn)<1

C.a(chǎn)≤1

D.0<a≤1或a<0答案:C25.下列關(guān)于算法的說法中正確的個(gè)數(shù)是()

①求解某一類問題的算法是唯一的;

②算法必須在有限步操作之后停止;

③算法的每一步操作必須是明確的,不能有歧義或模糊;

④算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類問題的算法不是唯一的,故①不正確;算法是有限步,結(jié)果明確性,②④是正確的.對(duì)于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關(guān)于算法的說法中正確的個(gè)數(shù)是3.故選C.26.已知雙曲線的焦點(diǎn)在y軸,實(shí)軸長為8,離心率e=2,過雙曲線的弦AB被點(diǎn)P(4,2)平分;

(1)求雙曲線的標(biāo)準(zhǔn)方程;

(2)求弦AB所在直線方程;

(3)求直線AB與漸近線所圍成三角形的面積.答案:(1)∵雙曲線的焦點(diǎn)在y軸,∴設(shè)雙曲線的標(biāo)準(zhǔn)方程為y2a2-x2b2=1;∵實(shí)軸長為8,離心率e=2,∴a=4,c=42,∴b2=c2-a2=16.或∵實(shí)軸長為8,離心率e=2,∴雙曲線為等軸雙曲線,a=b=4.∴雙曲線的標(biāo)準(zhǔn)方程為y216-x216=1.(2)設(shè)弦AB所在直線方程為y-2=k(x-4),A,B的坐標(biāo)為A(x1,y1),B(x2,y2).∴k=y1-y2x1-x2,x1+x22=4,y1+y22=2;∴y1216-x1216=1

y2216-x2216=1?y12-y2216-x12-x2216=0?(y1-y2)(y1+y2)16-(x1-x2)(x1+x2)16=0代入x1+x2=8,y1+y2=4,得(y1-y2)×416-(x1-x2)×816=0,∴y1-y2x1-x2×14-12=0,∴14k-12=0,∴k=2;所以弦AB所在直線方程為y-2=2(x-4),即2x-y-6=0.(3)等軸雙曲線y216-x216=1的漸近線方程為y=±x.∴直線AB與漸近線所圍成三角形為直角三角形.又漸近線與弦AB所在直線的交點(diǎn)坐標(biāo)分別為(6,6),(2,-2),∴直角三角形兩條直角邊的長度分別為62、22;∴直線AB與漸近線所圍成三角形的面積S=12×62×22=12.27.一支田徑隊(duì)有男運(yùn)動(dòng)員112人,女運(yùn)動(dòng)員84人,用分層抽樣的方法從全體男運(yùn)動(dòng)員中抽出了32人,則應(yīng)該從女運(yùn)動(dòng)員中抽出的人數(shù)為()

A.12

B.13

C.24

D.28答案:C28.在△ABC中,AB=2,AC=1,D為BC的中點(diǎn),則AD?BC=______.答案:AD?BC=AB+AC2?(AC-AB)=AC2-AB22=1-42=-32,故為:-32.29.如圖是一個(gè)方形迷宮,甲、乙兩人分別位于迷宮的A、B兩處,兩人同時(shí)以每一分鐘一格的速度向東、西、南、北四個(gè)方向行走,已知甲向東、西行走的概率都為14,向南、北行走的概率為13和p,乙向東、西、南、北四個(gè)方向行走的概率均為q

(1)p和q的值;

(2)問最少幾分鐘,甲、乙二人相遇?并求出最短時(shí)間內(nèi)可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙兩人可以相遇(如圖,在C、D、E三處相遇)

設(shè)在C、D、E三處相遇的概率分別為PC、PD、PE,則:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率為37230430.如果方程(1+i)x2-2(a+i)x+5-3i=0(a∈R)有實(shí)數(shù)解,求a的值.答案:設(shè)方程的實(shí)根為x0,則方程(1+i)x2-2(a+i)x+5-3i=0可化為(x20-2ax0+5)+(x20-2x0-3)i=0由復(fù)數(shù)相等的充要條件可得x20-2ax0+5=0①x20-2x0-3=0

②由②得x0=3或-1,代入①得a=73或-3∴a=73或-331.已知f(x)=,若f(x0)>1,則x0的取值范圍是()

A.(0,1)

B.(-∞,0)∪(0,+∞)

C.(-∞,0)∪(1,+∞)

D.(1,+∞)答案:C32.已知命題p:?x∈R,x2-x+1>0,則命題¬p

是______.答案:∵命題p:?x∈R,x2-x+1>0,∴命題p的否定是“?x∈R,x2-x+1≤0”故為:?x∈R,x2-x+1≤0.33.拋物線y=14x2的焦點(diǎn)坐標(biāo)是______.答案:拋物線y=14x2

即x2=4y,∴p=2,p2=1,故焦點(diǎn)坐標(biāo)是(0,1),故為(0,1).34.在平行四邊形ABCD中,E和F分別是邊CD和BC的中點(diǎn),若AC=λAE+μAF,其中λ、μ∈R,則λ+μ=______.答案:解析:設(shè)AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故為:43.35.把的圖象按向量平移得到的圖象,則可以是(

)A.B.C.D.答案:D解析:∵,∴要得到的圖象,需將的圖象向右平移個(gè)單位長度,故選D。36.設(shè)U={三角形},M={直角三角形},N={等腰三角形},則M∩N=______.答案:∵M(jìn)={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故為{等腰直角三角形}37.已知向量a=(1,1)與b=(2,3),用坐標(biāo)表示2a+b為______.答案:根據(jù)題意,a=(1,1)與b=(2,3),則2a+b=2(1,1)+(2,3)=(4,5);故為(4,5).38.已知:空間四邊形ABCD,AB=AC,DB=DC,求證:BC⊥AD.答案:取BC的中點(diǎn)為E,∵AB=AC,∴AE⊥BC.∵DB=DC,∴DE⊥BC.這樣,BC就和平面ADE內(nèi)的兩條相交直線AE、DE垂直,∴BC⊥面ADE,∴BC⊥AD.39.給出函數(shù)f(x)的一條性質(zhì):“存在常數(shù)M,使得|f(x)|≤M|x|對(duì)于定義域中的一切實(shí)數(shù)x均成立.”則下列函數(shù)中具有這條性質(zhì)的函數(shù)是()A.y=1xB.y=x2C.y=x+1D.y=xsinx答案:根據(jù)|sinx|≤1可知|y|=|xsinx|=|x||sinx|≤|x|永遠(yuǎn)成立故選D.40.已知A(3,-2),B(-5,4),則以AB為直徑的圓的方程是()A.(x-1)2+(y+1)2=25B.(x+1)2+(y-1)2=25C.(x-1)2+(y+1)2=100D.(x+1)2+(y-1)2=100答案:∵A(3,-2),B(-5,4),∴以AB為直徑的圓的圓心為(-1,1),半徑r=(-1-3)2+(1+2)2=5,∴圓的方程為(x+1)2+(y-1)2=25故選B.41.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復(fù)數(shù)z2+i的虛部.

(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實(shí)數(shù)a的值.答案:(Ⅰ)設(shè)z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復(fù)數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=8342.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點(diǎn),若從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側(cè)面剪開輔平,得出圓柱的側(cè)面展開圖,從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N點(diǎn),實(shí)際上是從側(cè)面展開圖的長方形的一個(gè)頂點(diǎn)M到達(dá)不相鄰的另一個(gè)頂點(diǎn)N.而兩點(diǎn)間以線段的長度最短.所以最短路線就是側(cè)面展開圖中長方形的一條對(duì)角線.如圖所示.43.關(guān)于x的方程x2+4x+k=0有一個(gè)根為-2+3i(i為虛數(shù)單位),則實(shí)數(shù)k=______.答案:由韋達(dá)定理(一元二次方程根與系數(shù)關(guān)系)可得:x1?x2=k∵k∈Rx1=-2+3i,∴x2=-2-3i,則k=(-2-3i)(-2+3i)=13故為:1344.(文)橢圓的一個(gè)焦點(diǎn)與短軸的兩端點(diǎn)構(gòu)成一個(gè)正三角形,則該橢圓的離心率為()

A.

B.

C.

D.不確定答案:C45.不等式log12(x2-2x-15)>log12(x+13)的解集為______.答案:滿足log0.5(x2-2x-15)>log0.5(x+13),得x2-2x-15<x+13x2-2x-15>0x+13>0解得:-4<x<-3,或5<x<7,則不等式log12(x2-2x-15)>log12(x+13)的解集為(-4,-3)∪(5,7)故為:(-4,-3)∪(5,7).46.點(diǎn)(2a,a-1)在圓x2+y2-2y-4=0的內(nèi)部,則a的取值范圍是()

A.-1<a<1

B.0<a<1

C.-1<a<

D.-<a<1答案:D47.兩條平行直線3x+4y-12=0與ax+8y+11=0之間的距離為(

A.

B.

C.7

D.答案:D48.輸入3個(gè)數(shù),輸出其中最大的公約數(shù),編程序完成上述功能.答案:INPUT

m,n,kr=m

MOD

nWHILE

r<>0m=nn=rr=m

MOD

nWENDr=k

MOD

nWHILE

r<>0k=nn=rr=k

MOD

nWENDPRINT

nEND49.不等式log2(x+1)<1的解集為()

A.{x|0<x<1}

B.{x|-1<x≤0}

C.{x|-1<x<1}

D.{x|x>-1}答案:C50.如圖,正方體ABCD-A1B1C1D1中,點(diǎn)E是棱BC的中點(diǎn),點(diǎn)F

是棱CD上的動(dòng)點(diǎn).

(Ⅰ)試確定點(diǎn)F的位置,使得D1E⊥平面AB1F;

(Ⅱ)當(dāng)D1E⊥平面AB1F時(shí),求二面角C1-EF-A的余弦值以及BA1與面C1EF所成的角的大?。鸢福海↖)由題意可得:以A為原點(diǎn),分別以直線AB、AD、AA1為x軸、y軸、z軸建立空間直角坐標(biāo)系,不妨設(shè)正方體的棱長為1,且DF=x,則A1(0,0,1),A(0,0,0),B(1,0,0),D(0,1,0),B1(1,0,1),D1(0,1,1),E(1,12,0),F(xiàn)(x,1,0)所以D1E=(1,-12,-1),AB1=(1,0,1),AF=(x,1,0)由D1E⊥面AB1F?D1E⊥AB1且D1E⊥AF,所以D1E?AB1=0D1E?AF=0,可解得x=12所以當(dāng)點(diǎn)F是CD的中點(diǎn)時(shí),D1E⊥平面AB1F.(II)當(dāng)D1E⊥平面AB1F時(shí),F(xiàn)是CD的中點(diǎn),F(xiàn)(12,1,0)由正方體的結(jié)構(gòu)特征可得:平面AEF的一個(gè)法向量為m=(0,0,1),設(shè)平面C1EF的一個(gè)法向量為n=(x,y,z),在平面C1EF中,EC1=(0,12,1),EF=(-12,12,0),所以EC1?n=0EF?n

=0,即y=-2zx=y,所以取平面C1EF的一個(gè)法向量為n=(2,2,-1),所以cos<m,n>=-13,所以<m,n>=π-arccos13,又因?yàn)楫?dāng)把m,n都移向這個(gè)二面角內(nèi)一點(diǎn)時(shí),m背向平面AEF,而n指向平面C1EF,所以二面角C1-EF-A的大小為π-arccos13又因?yàn)锽A1=(-1,0,1),所以cos<BA1,n>=-22,所以<BA1,n>=135°,∴BA1與平面C1EF所成的角的大小為45°.第3卷一.綜合題(共50題)1.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)

=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.2.在程序語言中,下列符號(hào)分別表示什么運(yùn)算*;\;∧;SQR;ABS?答案:“*”表示乘法運(yùn)算;“\”表示除法運(yùn)算;“∧”表示乘方運(yùn)算;“SQR()”表示求算術(shù)平方根運(yùn)算;“ABS()”表示求絕對(duì)值運(yùn)算.3.給出下列結(jié)論:

(1)兩個(gè)變量之間的關(guān)系一定是確定的關(guān)系;

(2)相關(guān)關(guān)系就是函數(shù)關(guān)系;

(3)回歸分析是對(duì)具有函數(shù)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法;

(4)回歸分析是對(duì)具有相關(guān)關(guān)系的兩個(gè)變量進(jìn)行統(tǒng)計(jì)分析的一種常用方法.

以上結(jié)論中,正確的有幾個(gè)?()

A.1

B.2

C.3

D.4答案:A4.已知大于1的正數(shù)x,y,z滿足x+y+z=33.

(1)求證:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32.

(2)求1log3x+log3y+1log3y+log3z+1log3z+log3x的最小值.答案:(1)由柯西不等式得,(x2x+2y+3z+y2y+2z+3z+z2z+2x+3y)[(x+2y+3z)+(y+2z+3x)+(z+2x+3y)]≥(x+y+z)2=27得:x2x+2y+3z+y2y+2z+3x+z2z+2x+3y≥32;(2)∵1log3x+log3y+1log3y+log3z+1log3z+log3x=1log3(xy)+1log3(yz)+1log3(zx),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx)),由柯西不等式得:(1log3(xy)+1log3(yz)+1log3(zx))(log3(xy)+log3(yz)+log3(zx))≥9所以,(1log3(xy)+1log3(yz)+1log3(zx))≥9(log3(xy)+log3(yz)+log3(zx))=92log3(xyz),又∵33=x+y+z≥33xyz.∴xyz≤33.∴l(xiāng)og3xyz≤32.得92log3xyz≥92×23=3所以,1log3x+log3y+1log3y+log3z+1log3z+log3x≥3當(dāng)且僅當(dāng)x=y=z=3時(shí),等號(hào)成立.故所求的最小值是3.5.如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸出S的值為254,則判斷框①中應(yīng)填入的條件是()A.n≤5B.n≤6C.n≤7D.n≤8答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是輸出滿足條件S=2+22+23+…+2n=126時(shí)S的值∵2+22+23+…+27=254,故最后一次進(jìn)行循環(huán)時(shí)n的值為7,故判斷框中的條件應(yīng)為n≤7.故選C.6.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),則C點(diǎn)坐標(biāo)為

______.答案:設(shè)C(x,y,z),則:

AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故為:(9,-6,10)7.某教師出了一份三道題的測試卷,每道題1分,全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,則全班學(xué)生的平均分為______分.答案:∵全班得3分、2分、1分和0分的學(xué)生所占比例分別為30%、50%、10%和10%,∴全班的平均分是3×30%+2×50%+1×10%+0×10%=2,故為:28.函數(shù)y=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,16],當(dāng)a變動(dòng)時(shí),函數(shù)b=g(a)的圖象可以是()A.

B.

C.

D.

答案:根據(jù)選項(xiàng)可知a≤0a變動(dòng)時(shí),函數(shù)y=2|x|的定義域?yàn)閇a,b],值域?yàn)閇1,16],∴2|b|=16,b=4故選B.9.已知,求證:答案:證明略解析:∵

∴①

又∵②

③由①②③得

∴,又不等式①、②、③中等號(hào)成立的條件分別為,,故不能同時(shí)成立,從而.10.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.11.直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),則點(diǎn)P(a,b)與圓的位置關(guān)系為______.答案:圓心到直線ax+by=1的距離,1a2+b2,∵直線ax+by=1與圓x2+y2=1有兩不同交點(diǎn),∴1a2+b2<1即a2+b2>1.故為:點(diǎn)在圓外.12.如圖,在復(fù)平面內(nèi),點(diǎn)A表示復(fù)數(shù)z的共軛復(fù)數(shù),則復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)是()A.AB.BC.CD.D答案:兩個(gè)復(fù)數(shù)是共軛復(fù)數(shù),兩個(gè)復(fù)數(shù)的實(shí)部相同,下部相反,對(duì)應(yīng)的點(diǎn)關(guān)于x軸對(duì)稱.所以點(diǎn)A表示復(fù)數(shù)z的共軛復(fù)數(shù)的點(diǎn)是B.故選B.13.AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為()

A.

B.3

C.2

D.2答案:A14.如圖是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊BD長為2;側(cè)視圖一直角三角形;俯視圖為一直角梯形,且AB=BC=1,則異面直線PB與CD所成角的正切值是()A.1B.2C.12D.12答案:取AD的中點(diǎn)E,連接BE,PE,CE,根據(jù)題意可知BE∥CD,∴∠PBE為異面直線PB與CD所成角根據(jù)條件知,PE=1,BE=2,PE⊥BE∴tan∠PBE=12故選C.15.甲、乙兩人投籃,投中的概率分別為0.6,0.7,若兩人各投2次,則兩人都投中1次的概率為______.答案:兩人都投中1次的概率為C210.6×0.4×C210.7×0.3=0.2016故為:0.201616.把平面上一切單位向量歸結(jié)到共同的起點(diǎn),那么這些向量的終點(diǎn)所構(gòu)成的圖形是

______.答案:把平面上一切單位向量歸結(jié)到共同的起點(diǎn),那么這些向量的終點(diǎn)到起點(diǎn)的距離都等于1,所以,由圓的定義得,這些向量的終點(diǎn)所構(gòu)成的圖形是半徑為1的圓.17.已知a=0.80.7,b=0.80.9,c=1.20.8,則a、b、c按從小到大的順序排列為

______.答案:由指數(shù)函數(shù)y=0.8x知,∵0.7<0.9,∴0.80.9<0.80.7<1,即b<a,又c=1.20.8>1,∴b<a<c.b<a<c18.已知P(B|A)=,P(A)=,則P(AB)等于()

A.

B.

C.

D.答案:C19.已知R為實(shí)數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點(diǎn),故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0,故D正確;故選D.20.下列特殊命題中假命題的個(gè)數(shù)是()

①有的實(shí)數(shù)是無限不循環(huán)小數(shù);

②有些三角形不是等腰三角形;

③有的菱形是正方形.

A.0

B.1

C.2

D.3答案:B21.平行線l1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為______.答案:將l1:3x-2y-5=0化成6x-4y-10=0∴l(xiāng)1:3x-2y-5=0與l2:6x-4y+3=0之間的距離為d=|-10-3|62+(-4)2=1352=132故為:13222.有50件產(chǎn)品編號(hào)從1到50,現(xiàn)在從中抽取抽取5件檢驗(yàn),用系統(tǒng)抽樣確定所抽取的編號(hào)為()

A.5,10,15,20,25

B.5,15,20,35,40

C.5,11,17,23,29

D.10,20,30,40,50答案:D23.若復(fù)數(shù)z=(2-i)(a-i),(i為虛數(shù)單位)為純虛數(shù),則實(shí)數(shù)a的值為______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若復(fù)數(shù)z=(2-i)(a-i)為純虛數(shù),∴2a-1=0,a+2≠0,∴a=12故為:1224.若向量a、b的夾角為150°,|a|=3,|b|=4,則|2a+b|=______.答案:|2a+b|=(2a+b)2=4a2+b2+4a?b=12+16+4×3×4×cos150°=2.故為:225.設(shè)a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:

(1)xn>2,且xn+1xn<1(n=1,2…);

(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當(dāng)n=1時(shí),∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12

-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結(jié)論成立.②假設(shè)n=k時(shí),結(jié)論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當(dāng)n=1時(shí)成立假設(shè)不等式當(dāng)n=k(k≥1)時(shí)成立當(dāng)n=k+1時(shí),由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設(shè)知,上面最后一個(gè)不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對(duì)所有的正整數(shù)n成立26.設(shè)點(diǎn)P對(duì)應(yīng)的復(fù)數(shù)為-3+3i,以原點(diǎn)為極點(diǎn),實(shí)軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)為()

A.(3,π)

B.(-3,π)

C.(3,π)

D.(-3,π)答案:A27.已知兩條直線a1x+b1y+1=0和a2x+b2y+1=0都過點(diǎn)A(2,3),則過兩點(diǎn)P1(a1,b1),P2(a2,b2)的直線方程為______.答案:∵A(2,3)是直線a1x+b1y+1=0和a2x+b2y+1=0的公共點(diǎn),∴2a1+3b1+1=0,且2a2+3b2+1=0,即兩點(diǎn)P1(a1,b1),P2(a2,b2)的坐標(biāo)都適合方程2x+3y+1=0,∴兩點(diǎn)(a1,b1)和(a2,b2)都在同一條直線2x+3y+1=0上,故點(diǎn)(a1,b1)和(a2,b2)所確定的直線方程是2x+3y+1=0,故為:2x+3y+1=0.28.求過點(diǎn)A(2,3)且被兩直線3x+4y-7=0,3x+4y+8=0截得線段為32的直線方程.答案:設(shè)所求直線l的斜率為k,∵|MN|=32,又在Rt△MNB中,|MB|=3,∴∠MNB=45°,即2條直線的夾角為45°,∴|

k-(-34)1+k(-34)|=tan45°=1,解得k=17,或k=-7,所求直線的方程為y-3=17(x-2),或y-3=-7(x-2),即x-7y+19=0,或7x+y-17=0.29.在極坐標(biāo)系中,過點(diǎn)(22,π4)作圓ρ=4sinθ的切線,則切線的極坐標(biāo)方程是______.答案:(22,π4)的直角坐標(biāo)為:(2,2),圓ρ=4sinθ的直角坐標(biāo)方程為:x2+y2-4y=0;顯然,圓心坐標(biāo)(0,2),半徑為:2;所以過(2,2)與圓相切的直線方程為:x=2,所以切線的極坐標(biāo)方程是:ρcosθ=2故為:ρcosθ=230.Direchlet函數(shù)定義為:D(t)=1,t∈Q0,t∈CRQ,關(guān)于函數(shù)D(t)的性質(zhì)敘述不正確的是()A.D(t)的值域?yàn)閧0,1}B.D(t)為偶函數(shù)C.D(t)不是周期函數(shù)D.D(t)不是單調(diào)函數(shù)答案:函數(shù)D(t)是分段函數(shù),值域是兩段的并集,所以值域?yàn)閧0,1};有理數(shù)和無理數(shù)正負(fù)關(guān)于原點(diǎn)對(duì)稱,所以函數(shù)D(t)的圖象關(guān)于y軸對(duì)稱,所以函數(shù)是偶函數(shù);對(duì)于不同的有理數(shù)x對(duì)應(yīng)的函數(shù)值相等,所以函數(shù)不是單調(diào)函數(shù);因?yàn)槿稳∫粋€(gè)非0有理數(shù),都有有理數(shù)加有理數(shù)為有理數(shù),有理數(shù)加無理數(shù)為無理數(shù),所以函數(shù)D(t)的圖象周期出現(xiàn),所以函數(shù)是周期函數(shù),所以選項(xiàng)C不正確.故選C.31.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數(shù)量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-1532.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A33.(文)若拋物線y2=2px的焦點(diǎn)與橢圓x26+y22=1的右焦點(diǎn)重合,則實(shí)數(shù)p的值是______.答案:∵x26+y22=1

中a2=6,b2=2,∴c2=4,c=2∴右焦點(diǎn)坐標(biāo)為(2,0)∵拋物線y2=2px的焦點(diǎn)與橢圓x26+y22=1的右焦點(diǎn)重合∴拋物線y2=2px中p=4故為434.設(shè)D為△ABC的邊AB上一點(diǎn),P為△ABC內(nèi)一點(diǎn),且滿足AD=23AB,AP=AD+14BC,則S△APDS△ABC=()A.29B.16C.754D.427答案:由題意,AP=AD+DP,AP=AD+14BC∴DP=14BC∴三角形ADP的高三角形ABC=ADAB=23∴S△APDS△ABC=23×14=16故選B.35.設(shè)A、B、C表示△ABC的三個(gè)內(nèi)角的弧度數(shù),a,b,c表示其對(duì)邊,求證:aA+bB+cCa+b+c≥π3.答案:證明:法一、不妨設(shè)A>B>C,則有a>b>c由排序原理:順序和≥亂序和∴aA+bB+cC≥aB+bC+cAaA+bB+cC≥aC+bA+cBaA+bB+cC=aA+bB+cC上述三式相加得3(aA+bB+cC)≥(A+B+C)(a+b+c)=π(a+b+c)∴aA+bB+cCa+b+c≥π3.法二、不妨設(shè)A>B>C,則有a>b>c,由排序不等式aA+bB+cC3≥A+B+C3?a+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論