2023年南通師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第1頁
2023年南通師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第2頁
2023年南通師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第3頁
2023年南通師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第4頁
2023年南通師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫含答案解析_第5頁
已閱讀5頁,還剩44頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年南通師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.在極坐標(biāo)系中,過點(22,π4)作圓ρ=4sinθ的切線,則切線的極坐標(biāo)方程是______.答案:(22,π4)的直角坐標(biāo)為:(2,2),圓ρ=4sinθ的直角坐標(biāo)方程為:x2+y2-4y=0;顯然,圓心坐標(biāo)(0,2),半徑為:2;所以過(2,2)與圓相切的直線方程為:x=2,所以切線的極坐標(biāo)方程是:ρcosθ=2故為:ρcosθ=22.已知a=(5,4),b=(3,2),則與2a-3b同向的單位向量為

______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)設(shè)與2a-3b平行的單位向量為e=(x,y),則2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故為e=±(55,255)3.橢圓焦點在x軸,離心率為32,直線y=1-x與橢圓交于M,N兩點,滿足OM⊥ON,求橢圓方程.答案:設(shè)橢圓方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴橢圓方程為x24b2+y2b2=1.把直線方程代入化簡得5x2-8x+4-4b2=0.設(shè)M(x1,y1)、N(x2,y2),則x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴橢圓方程為25x2+85y2=1.4.對于函數(shù)f(x),在使f(x)≤M成立的所有常數(shù)M中,我們把M的最小值稱為函數(shù)f(x)的“上確界”則函數(shù)f(x)=(x+1)2x2+1的上確界為()A.14B.12C.2D.4答案:因為f(x)=(x+1)2x2+1=x2+2x+1x2+1=1+2xx2+1又因為x2+1=|x|2+1≥2|x|≥2x∴2xx2+1≤1.∴f(x)≤2.即在使f(x)≤M成立的所有常數(shù)M中,M的最小值為2.故選C.5.已知某離散型隨機(jī)變量ξ的數(shù)學(xué)期望Eξ=76,ξ的分布列如下,則a=______.

答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故為:136.小王通過英語聽力測試的概率是,他連續(xù)測試3次,那么其中恰有1次獲得通過的概率是()

A.

B.

C.

D.答案:A7.如圖,已知某探照燈反光鏡的縱切面是拋物線的一部分,光源安裝在焦點F上,且燈的深度EG等于燈口直徑AB,若燈的深度EG為64cm,則光源安裝的位置F到燈的頂端G的距離為______cm.答案:以反射鏡頂點為原點,以頂點和焦點所在直線為x軸,建立直角坐標(biāo)系.設(shè)拋物線方程為y2=2px,依題意可點A(64,32)在拋物線上代入拋物線方程得322=128p解得p=8∴焦點坐標(biāo)為(4,0),而光源到反射鏡頂點的距離正是拋物線的焦距,即4cm.故為:4.8.設(shè)a=(x,y,3),b=(3,3,5),且a⊥b,則x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a?b=3x+3y+15=0,∴x+y=-5,故選

C.9.某校有老師200人,男學(xué)生1200人,女學(xué)生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為n的樣本;已知從女學(xué)生中抽取的人數(shù)為80人,則n=______.答案:∵某校有老師200人,男學(xué)生1

200人,女學(xué)生1

000人.∴學(xué)校共有200+1200+1000人由題意知801000=n200+1200+1000,∴n=192.故為:19210.某班從6名班干部(其中男生4人,女生2人)中選3人參加學(xué)校學(xué)生會的干部競選.

(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望;

(2)在男生甲被選中的情況下,求女生乙也被選中的概率.答案:(1)ξ的所有可能取值為0,1,2.依題意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列為ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)設(shè)“男生甲被選中的情況下,女生乙也被選中”為事件C,“男生甲被選中”為事件A,“女生乙被選中”為事件B從4個男生、2個女生中選3人,男生甲被選中的種數(shù)為n(A)=C52=10,男生甲被選中,女生乙也被選中的種數(shù)為n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被選中的情況下,女生乙也被選中的概率為25.11.(選做題)某制藥企業(yè)為了對某種藥用液體進(jìn)行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分?jǐn)?shù)法進(jìn)行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數(shù)為(

)。答案:712.已知正方形ABCD的邊長為1,=,=,=,則|++|等于(

A.0

B.2

C.

D.3答案:B13.已知2,4,2x,4y四個數(shù)的平均數(shù)是5而5,7,4x,6y四個數(shù)的平均數(shù)是9,則xy的值是______.答案:因為2,4,2x,4y四個數(shù)的平均數(shù)是5,則2+4+2x+4y=4×5,又由5,7,4x,6y四個數(shù)的平均數(shù)是9,則5+7+4x+6y=4×9,x與y滿足的關(guān)系式為x+2y=72x+3y=12解得x=3y=2故為6.14.過點(-3,-1),且與直線x-2y=0平行的直線方程為______.答案:直線l經(jīng)過點(-3,-1),且與直線x-2y=0平行,直線的斜率為12所以直線l的方程為:y+1=12(x+3)即x-2y+1=0.故為:x-2y+1=0.15.已知直線l過點P(2,1)且與x軸、y軸的正半軸分別交于A、B兩點,O為坐標(biāo)原點,則三角形OAB面積的最小值為______.答案:設(shè)A(a,0)、B(0,b),a>0,b>0,AB方程為xa+

yb=1,點P(2,1)代入得2a+1b=1≥22ab,∴ab≥8

(當(dāng)且僅當(dāng)a=4,b=2時,等號成立),故三角形OAB面積S=12

ab≥4,故為4.16.判斷下列各組中的兩個函數(shù)是同一函數(shù)的為()A.f(x)=x3x,g(x)=x2B.f(x)=x0(x≠0),g(x)=1(x≠0)C.f(x)=x2,g(x)=xD.f(x)=|x|,g(x)=(x)2答案:A、∵f(x)=x3x,g(x)=x2,f(x)的定義域:{x|x≠0},g(x)的定義域為R,故A錯誤;B、f(x)=x0=1,g(x)=1,定義域都為{x|x≠1},故B正確;C、∵f(x)=x2=|x|,g(x)=x,解析式不一樣,故C錯誤;D、∵f(x)=|x|,g(x)=x,f(x)的定義域為R,g(x)的定義域為:{x|x≥0},故D錯誤;故選B.17.函數(shù)f(x)=x2+ax+3,

(1)若f(1-x)=f(1+x),求a的值;

(2)在第(1)的前提下,當(dāng)x∈[-2,2]時,求f(x)的最值,并說明當(dāng)f(x)取最值時的x的值;

(3)若f(x)≥a恒成立,求a的取值范圍.答案:(1)∵f(1+x)=f(1-x)∴y=f(x)的圖象關(guān)于直線x=1對稱∴-a2=1即a=-2(2)a=-2時,函數(shù)f(x)=x2-2x+3在區(qū)間[-2,1]上遞減,在區(qū)間[1,2]上遞增,∴當(dāng)x=-2時,fmax(x)=f(-2)=11當(dāng)x=1時,fmin(x)=f(1)=2(3)∵x∈R時,有x2+ax+3-a≥0恒成立,須△=a2-4(3-a)≤0,即a2+4a-12≤0,所以-6≤a≤2.18.對總數(shù)為N的一批零件抽取一個容量為30的樣本,若每個零件被抽取的概率為0.25,則N等于()A.150B.200C.120D.100答案:∵每個零件被抽取的概率都相等,∴30N=0.25,∴N=120.故選C.19.平面向量a與b的夾角為,若a=(2,0),|b|=1,則|a+2b|=()

A.

B.2

C.4

D.12答案:B20.(幾何證明選做題)若A,B,C是⊙O上三點,PC切⊙O于點C,∠ABC=110°,∠BCP=40°,則∠AOB的大小為______.答案:∵PC切⊙O于點C,OC為圓的半徑∴OC⊥PC,即∠PCO=90°∵∠BCP=40°∴∠BCO=50°由弦切角定理及圓周角定理可知,∠BOC=2∠PCB=80°∵△BOC中,∠OBC=50°,∠ABC=110°∴∠OBA=60°∵OB=OA∴∠AOB=60°故為:60°21.已知0<k<4,直線l1:kx-2y-2k+8=0和直線l:2x+k2y-4k2-4=0與兩坐標(biāo)軸圍成一個四邊形,則使得這個四邊形面積最小的k值為______.答案:如圖所示:直線l1:kx-2y-2k+8=0即k(x-2)-2y+8=0,過定點B(2,4),與y軸的交點C(0,4-k),直線l:2x+k2y-4k2-4=0,即2x-4+k2(y-4)=0,過定點(2,4),與x軸的交點A(2k2+2,0),由題意知,四邊形的面積等于三角形ABD的面積和梯形OCBD的面積之和,故所求四邊形的面積為12×4×(2k2+2-2)+2×(4-k+4)2=4k2-k+8,∴k=18時,所求四邊形的面積最小,故為18.22.已知在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為x=3+3cosθy=1+3sinθ,(θ為參數(shù)),以O(shè)x為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為pcos(θ+π6)=0.

(1)寫出直線l的直角坐標(biāo)方程和圓C的普通方程;

(2)求圓C截直線l所得的弦長.答案:(1)消去參數(shù)θ,得圓C的普通方程為(x-3)2+(y-1)2=9.(2分)由ρcos(θ+π6)=0,得32ρcosθ-12ρsinθ=0,∴直線l的直角坐標(biāo)方程為3x-y=0.(5分)(2)圓心(3,1)到直線l的距離為d=|3×3-1|(3)2+12=1.(7分)設(shè)圓C直線l所得弦長為m,則m2=r2-d2=9-1=22,∴m=42.(10分)23.已知直線方程l1:2x-4y+7=0,l2:x-2y+5=0,則l1與l2的關(guān)系()

A.平行

B.重合

C.相交

D.以上答案都不對答案:A24.滿足{1,2}∪A={1,2,3}的集合A的個數(shù)為______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的個數(shù)為4.25.用樣本估計總體,下列說法正確的是()A.樣本的結(jié)果就是總體的結(jié)果B.樣本容量越大,估計就越精確C.樣本容量越小,估計就越精確D.樣本的方差可以近似地反映總體的平均狀態(tài)答案:用樣本估計總體時,樣本容量越大,估計就越精確,樣本的平均值可以近似地反映總體的平均狀態(tài),樣本的標(biāo)準(zhǔn)差可以近似地反映總體的波動狀態(tài),數(shù)據(jù)的方差越大,說明數(shù)據(jù)越不穩(wěn)定,樣本的結(jié)果可以粗略的估計總體的結(jié)果,但不就是總體的結(jié)果.故選B.26.用反證法證明:已知x,y∈R,且x+y>2,則x,y中至少有一個大于1.答案:證明:用反證法,假設(shè)x,y均不大于1,即x≤1且y≤1,則x+y≤2,這與已知條件x+y>2矛盾,∴x,y中至少有一個大于1,即原命題得證.27.已知集合A={1,2,3},集合B={4,5},映射f:A→B,且滿足1對應(yīng)的元素是4,則這樣的映射有()A.2個B.4個C.8個D.9個答案:∵滿足1對應(yīng)的元素是4,集合A中還有兩個元素2和3,2可以和4對應(yīng),也可以和5對應(yīng),3可以和4對應(yīng),也可以和5對應(yīng),每個元素有兩種不同的對應(yīng),∴共有2×2=4種結(jié)果,故選B.28.管理人員從一池塘中撈出30條魚做上標(biāo)記,然后放回池塘,將帶標(biāo)記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標(biāo)記的魚有2條.根據(jù)以上收據(jù)可以估計該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.29.已知向量a=(x,1,0),b=(1,2,3),若a⊥b,則x=______.答案:∵向量a=(x,1,0),b=(1,2,3),a⊥b,∴a?b=x+2+0=0,x=-2.故為:-2.30.某房間有四個門,甲要各進(jìn)、出這個房間一次,不同的走法有多少種?()

A.12

B.7

C.16

D.64答案:C31.一支田徑隊有男運(yùn)動員112人,女運(yùn)動員84人,用分層抽樣的方法從全體男運(yùn)動員中抽出了32人,則應(yīng)該從女運(yùn)動員中抽出的人數(shù)為()

A.12

B.13

C.24

D.28答案:C32.以下四組向量中,互相平行的是.()

(1)=(1,2,1),=(1,-2,3);

(2)=(8,4,-6),=(4,2,-3);

(3)=(0,1,-1),=(0,-3,3);

(4)=(-3,2,0),=(4,-3,3).

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)答案:B33.抽樣調(diào)查在抽取調(diào)查對象時()A.按一定的方法抽取B.隨意抽取C.全部抽取D.根據(jù)個人的愛好抽取答案:一般地,抽樣方法分為3種:簡單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣無論是哪種抽樣方法,都遵循機(jī)會均等的原理,即在抽樣過程中,各個體被抽到的概率是相等的.根據(jù)以上分析,可知只有A項符合題意.故選:A34.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ35.有一批機(jī)器,編號為1,2,3,…,112,為調(diào)查機(jī)器的質(zhì)量問題,打算抽取10臺,問此樣本若采用簡單的隨機(jī)抽樣方法將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號001,002,112…用抽簽法做112個形狀、大小相同的號簽,然后將這些號簽放到同一個箱子里,進(jìn)行均勻攪拌,抽簽時,每次從中抽一個號簽,連續(xù)抽取10次,就得到一個容量為10的樣本.36.(1+2x)10的展開式的第4項是______.答案:(1+2x)10的展開式的第4項為T4=C310

(2X)3=960x3,故為960x3.37.在空間直角坐標(biāo)系中,O為坐標(biāo)原點,設(shè)A(,,),B(,,0),C(

,,),則(

A.OA⊥AB

B.AB⊥AC

C.AC⊥BC

D.OB⊥OC答案:C38.如果橢圓x225+y216=1上一點P到焦點F1的距離為6,則點P到另一個焦點F2的距離為()A.5B.4C.8D.6答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故選B.39.圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,則圓臺較小底面的半徑為()A.7B.6C.5D.3答案:設(shè)上底面半徑為r,因為圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側(cè)面積為84π,所以S側(cè)面積=π(r+3r)l=84π,r=7故選A40.已知向量,滿足:||=3,||=5,且=λ,則實數(shù)λ=()

A.

B.

C.±

D.±答案:C41.在正方體ABCD-A1B1C1D1中,若E為A1C1中點,則直線CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A為原點,AB、AD、AA1所在直線分別為x,y,z軸建空間直角坐標(biāo)系,設(shè)正方體棱長為1,則A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),顯然CE?BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.

故選B.42.設(shè)i為虛數(shù)單位,若=b+i(a,b∈R),則a,b的值為()

A.a(chǎn)=0,b=1

B.a(chǎn)=1,b=0

C.a(chǎn)=1,b=1

D.a(chǎn)=,b=-1答案:B43.關(guān)于x的方程ax+b=0,當(dāng)a,b滿足條件______

時,方程的解集是有限集;滿足條件______

時,方程的解集是無限集;滿足條件______

時,方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個解時,為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時,方程有無數(shù)組解,方程的解集是無限集;滿足條件

a=0,b≠0

時,方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;

a=0,b≠0.44.已知f(x)在(0,2)上是增函數(shù),f(x+2)是偶函數(shù),那么正確的是()A.f(1)<f(52)<f(72)B.f(72)<f(1)<f(52)C.f(72)<f(52)<f(1)D.f(52)<f(1)<f(72)答案:根據(jù)函數(shù)的圖象的平移可得把f(x+2)向右平移2個單位可得f(x)的圖象f(x+2)是偶函數(shù),其圖象關(guān)于y軸對稱可知f(x)的圖象關(guān)于x=2對稱∴f(72)=f(12),f(52)=f(32)∵f(x)在(0,2)單調(diào)遞增,且12<1<32∴f(12)<f(1)<f(32)即f(72)<f(1)<f(52)故選:B45.若一元二次方程ax2+2x+1=0有一個正根和一個負(fù)根,則有

A.a(chǎn)<0

B.a(chǎn)>0

C.a(chǎn)<-1

D.a(chǎn)>1答案:A46.已知點P為△ABC所在平面上的一點,且,其中t為實數(shù),若點P落在△ABC的內(nèi)部,則t的取值范圍是()

A.

B.

C.

D.答案:D47.

(理)

在長方體ABCD-A1B1C1D1中,以為基底表示,其結(jié)果是()

A.

B.

C.

D.答案:C48.直線(t為參數(shù))和圓x2+y2=16交于A,B兩點,則AB的中點坐標(biāo)為()

A.(3,-3)

B.(-,3)

C.(,-3)

D.(3,-)答案:D49.已知求證:答案:證明見解析解析:證明:50.已知三角形ABC的頂點坐標(biāo)為A(0,3)、B(-2,-1)、C(4,3),M是BC邊上的中點。

(1)求AB邊所在的直線方程。

(2)求中線AM的長。

(3)求點C關(guān)于直線AB對稱點的坐標(biāo)。答案:解:(1)由兩點式得AB邊所在的直線方程為:=即2x-y+3=0(2)由中點坐標(biāo)公式得M(1,1)∴|AM|==(3)設(shè)C點關(guān)于直線AB的對稱點為C′(x′,y′)則CC′⊥AB且線段CC′的中點在直線AB上。即解之得x′=

y′=C′點坐標(biāo)為(,)第2卷一.綜合題(共50題)1.兩條平行直線3x+4y-12=0與ax+8y+11=0之間的距離為(

A.

B.

C.7

D.答案:D2.(坐標(biāo)系與參數(shù)方程選做題)點P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點的最短距離為______.答案:設(shè)點Q(t2,2t)為曲線上的任意一點,則|PQ|=(t2+3)2+(2t)2=(t2+5)2-16≥52-16=3,當(dāng)且僅當(dāng)t=0取等號,此時Q(0,0).故點P(-3,0)到曲線x=t2y=2t(其中參數(shù)t∈R)上的點的最短距離為3.故為3.3.若a為實數(shù),,則a等于()

A.

B.-

C.2

D.-2答案:B4.在直角坐標(biāo)系中,畫出下列向量:

(1)|a|=2,a的方向與x軸正方向的夾角為60°,與y軸正方向的夾角為30°;

(2)|a|=4,a的方向與x軸正方向的夾角為30°,與y軸正方向的夾角為120°;

(3)|a|=42,a的方向與x軸正方向的夾角為135°,與y軸正方向的夾角為135°.答案:由題意作出向量a如右圖所示:(1)(2)(3)5.已知||=3,A、B分別在x軸和y軸上運(yùn)動,O為原點,則動點P的軌跡方程是()

A.

B.

C.

D.答案:B6.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.7.已知下列命題(其中a,b為直線,α為平面):

①若一條直線垂直于一個平面內(nèi)無數(shù)條直線,則這條直線與這個平面垂直;

②若一條直線平行于一個平面,則垂直于這條直線的直線必垂直于這個平面;

③若a∥α,b⊥α,則a⊥b;

④若a⊥b,則過b有且只有一個平面與a垂直.

上述四個命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內(nèi)無數(shù)條直線均為平行線時,不能得出直線與這個平面垂直,將“無數(shù)條”改為“所有”才正確;故①錯誤;②垂直于這條直線的直線與這個平面可以是任何的位置關(guān)系,有可能是平行、相交、線在面內(nèi),故②錯誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過b有且只有一個平面與a垂直,顯然正確.故選D.8.某計算機(jī)程序每運(yùn)行一次都隨機(jī)出現(xiàn)一個五位的二進(jìn)制數(shù)A=

,其中A的各位數(shù)中,a1=1,ak(k=2,3,4,5)出現(xiàn)0的概率為,出現(xiàn)1的概率為.記ξ=a1+a2+a3+a4+a5,當(dāng)程序運(yùn)行一次時,ξ的數(shù)學(xué)期望Eξ=()

A.

B.

C.

D.答案:C9.甲、乙、丙、丁四位同學(xué)各自對A、B兩個變量的線性相關(guān)性作試驗,并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m如表:

則哪位同學(xué)的實驗結(jié)果體現(xiàn)A、B兩個變量更強(qiáng)的線性相關(guān)性()

A.丙

B.乙

C.甲

D.丁答案:C10.已知x與y之間的一組數(shù)據(jù):

x

0

1

2

3

y

2

4

6

8

則y與x的線性回歸方程為y=bx+a必過點()

A.(1.5,4)

B.(1.5,5)

C.(1,5)

D.(2,5)答案:B11.已知橢圓的短軸長等于2,長軸端點與短軸端點間的距離等于5,則此橢圓的標(biāo)準(zhǔn)方程是______.答案:由題意可得2b=2a2+b2=(5)2,解得b=1a=2.故橢圓的標(biāo)準(zhǔn)方程是x24+y2=1或y24+x2=1.故為x24+y2=1或y24+x2=1.12.(1)把參數(shù)方程(t為參數(shù))x=secty=2tgt化為直角坐標(biāo)方程;

(2)當(dāng)0≤t<π2及π≤t<3π2時,各得到曲線的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲線的直角坐標(biāo)普通方程為x2-y24=1.(2)當(dāng)0≤t≤π2時,x≥1,y≥0,得到的是曲線在第一象限的部分(包括(1,0)點);當(dāng)0≤t≤3π2時,x≤-1,y≥0,得到的是曲線在第二象限的部分,(包括(-1,0)點).13.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測,這種抽樣方法是()

A.簡單隨機(jī)抽樣

B.系統(tǒng)抽樣

C.分層抽樣

D.其它抽樣方法答案:B14.已知雙曲線的a=5,c=7,則該雙曲線的標(biāo)準(zhǔn)方程為()

A.-=1

B.-=1

C.-=1或-=1

D.-=0或-=0答案:C15.已知平行四邊形ABCD,下列正確的是()

A.

B.

C.

D.答案:B16.兩個樣本甲和乙,其中=10,=10,=0.055,=0.015,那么樣本甲比樣本乙波動()

A.大

B.相等

C.小

D.無法確定答案:A17.已知點P(x,y)在曲線x=2+cosθy=2sinθ(θ為參數(shù)),則ω=3x+2y的最大值為______.答案:由題意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴當(dāng)sin(θ+?)=1時,ω=3x+2y的最大值為

11故為11.18.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()

A.

B.

C.

D.答案:B19.設(shè)a,b,c都是正數(shù),求證:

(1)(a+b+c)≥9;

(2)(a+b+c)≥.答案:證明略解析:證明

(1)∵a,b,c都是正數(shù),∴a+b+c≥3,++≥3.∴(a+b+c)≥9,當(dāng)且僅當(dāng)a=b=c時,等號成立.(2)∵(a+b)+(b+c)+(c+a)≥3,又≥,∴(a+b+c)≥,當(dāng)且僅當(dāng)a=b=c時,等號成立.20.要從已編號(1~60)的60枚最新研制的某型導(dǎo)彈中隨機(jī)抽取6枚來進(jìn)行發(fā)射試驗,用每部分選取的號碼間隔一樣的系統(tǒng)抽樣方法確定所選取的6枚導(dǎo)彈的編號可能是()

A.5、10、15、20、25、30

B.3、13、23、33、43、53

C.1、2、3、4、5、6

D.2、4、8、16、32、48答案:B21.甲射擊運(yùn)動員擊中目標(biāo)為事件A,乙射擊運(yùn)動員擊中目標(biāo)為事件B,則事件A,B為()

A.互斥事件

B.獨(dú)立事件

C.對立事件

D.不相互獨(dú)立事件答案:B22.設(shè)集合A={x|},則A∩B等于(

A.

B.

C.

D.答案:B23.在同一坐標(biāo)系中,y=ax與y=a+x表示正確的是()A.

B.

C.

D.

答案:由y=x+a得斜率為1排除C,由y=ax與y=x+a中a同號知若y=ax遞增,則y=x+a與y軸的交點在y軸的正半軸上,由此排除B;若y=ax遞減,則y=x+a與y軸的交點在y軸的負(fù)半軸上,由此排除D,知A是正確的;故選A.24.用反證法證明:“a>b”,應(yīng)假設(shè)為()

A.a(chǎn)>b

B.a(chǎn)<b

C.a(chǎn)=b

D.a(chǎn)≤b答案:D25.讀下面的程序:

上面的程序在執(zhí)行時如果輸入6,那么輸出的結(jié)果為()

A.6

B.720

C.120

D.1答案:B26.如圖,正六邊形ABCDEF中,=()

A.

B.

C.

D.

答案:D27.抽樣調(diào)查在抽取調(diào)查對象時()A.按一定的方法抽取B.隨意抽取C.全部抽取D.根據(jù)個人的愛好抽取答案:一般地,抽樣方法分為3種:簡單隨機(jī)抽樣、分層抽樣和系統(tǒng)抽樣無論是哪種抽樣方法,都遵循機(jī)會均等的原理,即在抽樣過程中,各個體被抽到的概率是相等的.根據(jù)以上分析,可知只有A項符合題意.故選:A28.半徑為5,圓心在y軸上,且與直線y=6相切的圓的方程為______.答案:如圖所示,因為半徑為5,圓心在y軸上,且與直線y=6相切,所以可知有兩個圓,上圓圓心為(0,11),下圓圓心為(0,1),所以圓的方程為x2+(y-1)2=25或x2+(y-11)2=25.29.(幾何證明選講)如圖,點A、B、C都在⊙O上,過點C的切線交AB的延長線于點D,若AB=5,BC=3,CD=6,則線段AC的長為______.答案:∵過點C的切線交AB的延長線于點D,∴DC是圓的切線,DBA是圓的割線,根據(jù)切割線定理得到DC2=DB?DA,∵AB=5,CD=6,∴36=DB(DB+5)∴DB=4,由題意知∠D=∠D,∠BCD=∠A∴△DBC∽△DCA,∴DCDA=BCCA∴AC=3×96=4.5,故為:4.530.下面四個結(jié)論:

①偶函數(shù)的圖象一定與y軸相交;

②奇函數(shù)的圖象一定通過原點;

③偶函數(shù)的圖象關(guān)于y軸對稱;

④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R),

其中正確命題的個數(shù)是()A.1B.2C.3D.4答案:偶函數(shù)的圖象關(guān)于y軸對稱,但不一定與y軸相交,因此①錯誤,③正確;奇函數(shù)的圖象關(guān)于原點對稱,但不一定經(jīng)過原點,只有在原點處有定義才通過原點,因此②錯誤;若y=f(x)既是奇函數(shù),又是偶函數(shù),由定義可得f(x)=0,但不一定x∈R,只要定義域關(guān)于原點對稱即可,因此④錯誤.故選A.31.設(shè)非零向量、、滿足||=||=||,+=,則<,>=()

A.150°

B.120°

C.60°

D.30°答案:B32.已知二元一次方程組a1x+b1y=c1a2x+b2y=c2的增廣矩陣是1-11113,則此方程組的解是______.答案:由題意,方程組

x-

y=1x+y=3解之得x=2y=1故為x=2y=133.某工程隊有6項工程需要單獨(dú)完成,其中工程乙必須在工程甲完成后才能進(jìn)行,工程丙必須在工程乙完成后才能進(jìn)行,有工程丁必須在工程丙完成后立即進(jìn)行.那么安排這6項工程的不同排法種數(shù)是______.(用數(shù)字作答)答案:依題意,乙必須在甲后,丙必須在乙后,丙丁必相鄰,且丁在丙后,只需將剩余兩個工程依次插在由甲、乙、丙丁四個工程之間即可,第一個插入時有4種,第二個插入時共5個空,有5種方法;可得有5×4=20種不同排法.故為:2034.已知集合A={x|x>1},則(CRA)∩N的子集有()A.1個B.2個C.4個D.8個答案:∵集合A={x|x>1},∴CRA={x|x≤1},∴(CRA)∩N={0,1},∴(CRA)∩N的子集有22=4個,故選C.35.某市某年一個月中30天對空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù)如下:

61

76

70

56

81

91

55

91

75

81

88

67

101

103

57

91

77

86

81

83

82

82

64

79

86

85

75

71

49

45

(Ⅰ)完成下面的頻率分布表;

(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中a的值;

(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的概率.

分組頻數(shù)頻率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下圖所示.

…(4分)(Ⅱ)如下圖所示.…(6分)由己知,空氣質(zhì)量指數(shù)在區(qū)間[71,81)的頻率為630,所以a=0.02.…(8分)分組頻數(shù)頻率………[81,91)101030[91,101)3330………(Ⅲ)設(shè)A表示事件“在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”,由己知,質(zhì)量指數(shù)在區(qū)間[91,101)內(nèi)的有3天,記這三天分別為a,b,c,質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的有2天,記這兩天分別為d,e,則選取的所有可能結(jié)果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為10.…(10分)事件“至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”的可能結(jié)果為:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為7,…(12分)所以P(A)=710.…(13分)36.設(shè)a、b為單位向量,它們的夾角為90°,那么|a+3b|等于()A.7B.10C.13D.4答案:∵a,b它們的夾角為90°∴a?b=0∴(a+3b)2=a2+6a?b+9b2=10,|a+3b|=10.故選B.37.若a>0,b<0,直線y=ax+b的圖象可能是()

A.

B.

C.

D.

答案:C38.以過橢圓+=1(a>b>0)的右焦點的弦為直徑的圓與直線l:x=的位置關(guān)系是()

A.相交

B.相切

C.相離

D.不能確定答案:C39.求原點至3x+4y+1=0的距離?答案:由原點坐標(biāo)為(0,0),得到原點到已知直線的距離d=|3?0+4?0+1|32+42=15.40.以直線x+3=0為準(zhǔn)線的拋物線的標(biāo)準(zhǔn)方程是______.答案:由題意,拋物線的焦點在x軸上,焦點坐標(biāo)為(3,0),∴拋物線的標(biāo)準(zhǔn)方程是y2=12x故為:y2=12x41.想要檢驗是否喜歡參加體育活動是不是與性別有關(guān),應(yīng)該檢驗()

A.H0:男性喜歡參加體育活動

B.H0:女性不喜歡參加體育活動

C.H0:喜歡參加體育活動與性別有關(guān)

D.H0:喜歡參加體育活動與性別無關(guān)答案:D42.已知在△ABC中,A(2,-5,3),AB=(4,1,2),BC=(3,-2,5),則C點坐標(biāo)為

______.答案:設(shè)C(x,y,z),則:

AC=AB+BC即:(x-2,y+5,z-3)=(4,1,2)+(3,-2,5)=(7,-1,7)所以得:x-2=7y+5=-1z-3=7,即x=9y=-6z=10故為:(9,-6,10)43.下列程序表示的算法是輾轉(zhuǎn)相除法,請在空白處填上相應(yīng)語句:

(1)處填______;

(2)處填______.答案:∵程序表示的算法是輾轉(zhuǎn)相除法,根據(jù)輾轉(zhuǎn)相除法,先求出m除以n的余數(shù),然后利用輾轉(zhuǎn)相除法,將n的值賦給m,將余數(shù)賦給n,一直算到余數(shù)為零時m的值即可,∴(1)處應(yīng)該為r=mMODn;(2)處應(yīng)該為r=0.故為r=mMODn;r=0.44.等于()

A.a(chǎn)16

B.a(chǎn)8

C.a(chǎn)4

D.a(chǎn)2答案:C45.(1)求過兩直線l1:7x-8y-1=0和l2:2x+17y+9=0的交點,且平行于直線2x-y+7=0的直線方程.

(2)求點A(--2,3)關(guān)于直線l:3x-y-1=0對稱的點B的坐標(biāo).答案:(1)聯(lián)立兩條直線的方程可得:7x-8y-1=02x+17y+9=0,解得x=-1127,y=-1327所以l1與l2交點坐標(biāo)是(-1127,-1327).(2)設(shè)與直線2x-y+7=0平行的直線l方程為2x-y+c=0因為直線l過l1與l2交點(-1127,-1327).所以c=13所以直線l的方程為6x-3y+1=0.點P(-2,3)關(guān)于直線3x-y-1=0的對稱點Q的坐標(biāo)(a,b),則b-3a+2×3=-1,且3×a-22-b+32-1=0,解得a=10且b=-1,對稱點的坐標(biāo)(10,-1)46.已知拋物線C的參數(shù)方程為x=8t2y=8t(t為參數(shù)),設(shè)拋物線C的焦點為F,準(zhǔn)線為l,P為拋物線上一點,PA⊥l,A為垂足,如果直線AF的斜率為-3,那么|PF|=______.答案:把拋物線C的參數(shù)方程x=8t2y=8t(t為參數(shù)),消去參數(shù)化為普通方程為y2=8x.故焦點F(2,0),準(zhǔn)線方程為x=-2,再由直線FA的斜率是-3,可得直線FA的傾斜角為120°,設(shè)準(zhǔn)線和x軸的交點為M,則∠AFM=60°,且MF=p=4,∴∠PAF=180°-120°=60°.∴AM=MF?tan60°=43,故點A(0,43),把y=43代入拋物線求得x=6,∴點P(6,43),故|PF|=(6-2)2+(43-0)2=8,故為8.47.如圖,△ABC是圓的內(nèi)接三角形,PA切圓于點A,PB交圓于點D.若∠ABC=60°,PD=1,BD=8,則∠PAC=______°,PA=______.答案:∵PD=1,BD=8,∴PB=PD+BD=9由切割線定理得PA2=PD?PB=9∴PA=3又∵PE=PA∴PE=3又∠PAC=∠ABC=60°故:60,348.袋中裝著標(biāo)有數(shù)字1,2,3,4,5的小球各2個,現(xiàn)從袋中任意取出3個小球,假設(shè)每個小球被取出的可能性都相等.

(Ⅰ)求取出的3個小球上的數(shù)字分別為1,2,3的概率;

(Ⅱ)求取出的3個小球上的數(shù)字恰有2個相同的概率;

(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,求P(X≥4)的值.答案:(I)記“取出的3個小球上的數(shù)字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個小球上的數(shù)字恰有2個相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,則X≥4包含取出的3個小球上的最大數(shù)字為4或5兩種情況,當(dāng)取出的3個小球上的最大數(shù)字為4時,P(X=4)=C12C26+C22C16C310=36120=310;當(dāng)取出的3個小球上的最大數(shù)字為5時,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.49.(文)將圖所示的一個直角三角形ABC(∠C=90°)繞斜邊AB旋轉(zhuǎn)一周,所得到的幾何體的正視圖是下面四個圖形中的(

A.

B.

C.

D.

答案:B50.一個四棱錐和一個三棱錐恰好可以拼接成一個三棱柱.這個四棱錐的底面為正方形,且底面邊長與各側(cè)棱長相等,這個三棱錐的底面邊長與各側(cè)棱長也都相等.設(shè)四棱錐、三棱錐、三棱柱的高分別為h1,h2,h,則h1:h2:h3=()

A.:1:1

B.:2:2

C.:2:

D.:2:答案:B第3卷一.綜合題(共50題)1.在空間直角坐標(biāo)系中,點(-2,1,4)關(guān)于x軸的對稱點的坐標(biāo)為()

A.(-2,1,-4)

B.(-2,-1,-4)

C.(2,1,-4)

D.(2,-1,4)答案:B2.擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù)(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話時間為5.5分鐘的話費(fèi)為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數(shù)可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.3.如圖:在長方體ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F(xiàn)分別是線段AB,BC上的點,且EB=FB=1.

(1)求二面角C-DE-C1的大??;

(2)求異面直線EC1與FD1所成角的大??;

(3)求異面直線EC1與FD1之間的距離.答案:(1)以A為原點AB,AD,AA1分別為x軸、y軸、z軸的正向建立空間直角坐標(biāo)系,則有D(0,3,0),D1(0,3,2),E(3,0,0),F(xiàn)(4,1,0),C1(4,3,2).(1分)于是DE=(3,-3,0),EC1=(1,3,2),F(xiàn)D1=(-4,2,2)(3分)設(shè)向量n=(x,y,z)與平面C1DE垂直,則有n⊥DEn⊥EC1?3x-3y=0x+3y+2z=0?x=y=-12z.∴n=(-z2,-z2,z)=z2(-1,-1,2),其中z>0.取n0=(-1,-1,2),則n0是一個與平面C1DE垂直的向量,(5分)∵向量AA1=(0,0,2)與平面CDE垂直,∴n0與AA1所成的角θ為二面角C-DE-C1的平面角.(6分)∴cosθ=n0?AA1|n0||AA1|=-1×0-1×0+2×21+1+4×0+0+4=63.(7分)故二面角C-DE-C1的大小為arccos63.(8分)(2)設(shè)EC1與FD1所成角為β,(1分)則cosβ=EC1?FD1|EC1||FD1|=1×(-4)+3×2+2×21+1+4×0+0+4=2114(10分)故異面直線EC1與FD1所成角的大小為arccos2114(11分)(3)設(shè)m=(x,y,z)m⊥EC1m⊥FD1?m=(17,-57,1)又取D1C1=(4,0,0)$}}\overm}=(\frac{1}{7},-\frac{5}{7},1)$$}}\overC}_1}=(4,0,0)$(13分)設(shè)所求距離為d,則d=|m?D1C1||m|=4315$}}\overC}}_1}|}}{|\vecm|}=\frac{{4\sqrt{3}}}{15}$(14分).4.參數(shù)方程(0<θ<2π)表示()

A.雙曲線的一支,這支過點(1,)

B.拋物線的一部分,這部分過(1,)

C.雙曲線的一支,這支過點(-1,)

D.拋物線的一部分,這部分過(-1,)答案:B5.正方形ABCD中,AB=1,分別以A、C為圓心作兩個半徑為R、r(R>r)的圓,當(dāng)R、r滿足條件______時,⊙A與⊙C有2個交點(

A.R+r>

B.R-r<<R+r

C.R-r>

D.0<R-r<答案:B6.某工廠生產(chǎn)的產(chǎn)品,用速度恒定的傳送帶將產(chǎn)品送入包裝車間之前,質(zhì)檢員每隔3分鐘從傳送帶上是特定位置取一件產(chǎn)品進(jìn)行檢測,這種抽樣方法是()

A.簡單隨機(jī)抽樣

B.系統(tǒng)抽樣

C.分層抽樣

D.其它抽樣方法答案:B7.中,是邊上的中線(如圖).

求證:.

答案:證明見解析解析:取線段所在的直線為軸,點為原點建立直角坐標(biāo)系.設(shè)點的坐標(biāo)為,點的坐標(biāo)為,則點的坐標(biāo)為.可得,,,.,..8.圓C1:x2+y2-6x+6y-48=0與圓C2:x2+y2+4x-8y-44=0公切線的條數(shù)是()

A.0條

B.1條

C.2條

D.3條答案:C9.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長為2,側(cè)棱長為4,E、F分別為棱AB、BC的中點.

(1)求證:平面B1EF⊥平面BDD1B1;

(2)求點D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)

建立如圖所示的空間直角坐標(biāo)系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)

由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設(shè)平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.10.將包含甲、乙兩人的4位同學(xué)平均分成2個小組參加某項公益活動,則甲、乙兩名同學(xué)分在同一小組的概率為()

A.

B.

C.

D.答案:C11.已知矩陣A=abcd,若矩陣A屬于特征值3的一個特征向量為α1=11,屬于特征值-1的一個特征向量為α2=1-1,則矩陣A=______.答案:由矩陣A屬于特征值3的一個特征向量為α1=11可得abcd11=311,即a+b=3c+d=3;(4分)由矩陣A屬于特征值2的一個特征向量為α2=1-1,可得abcd1-1=(-1)1-1,即a-b=-1c-d=1,(6分)解得a=1b=2c=2d=1,即矩陣A=1221.(10分)故為:1221.12.如圖,設(shè)a,b,c,d>0,且不等于1,y=ax,y=bx,y=cx,y=dx在同一坐標(biāo)系中的圖象如圖,則a,b,c,d的大小順序()

A.a(chǎn)<b<c<d

B.a(chǎn)<b<d<c

C.b<a<d<c

D.b<a<c<d

答案:C13.若把A、B、C、D、E、F、G七人排成一排,則A、B必須相鄰,且C、D不能相鄰的概率是______(結(jié)果用數(shù)值表示).答案:把AB看成一個整體,CD不能相鄰,就用插空法,則有A22A44A25種方法把A、B、C、D、E、F、G七人排成一排,隨便排的種數(shù)A77所以概率為A22A44A25A77=421故為:421.14.點(2,0,3)在空間直角坐標(biāo)系中的位置是在()

A.y軸上

B.xOy平面上

C.xOz平面上

D.第一卦限內(nèi)答案:C15.如圖所示的圓盤由八個全等的扇形構(gòu)成,指針繞中心旋轉(zhuǎn),可能隨機(jī)停止,則指針停止在陰影部分的概率為()A.12B.14C.16D.18答案:如圖:轉(zhuǎn)動轉(zhuǎn)盤被均勻分成8部分,陰影部分占1份,則指針停止在陰影部分的概率是P=18.故選D.16.隨機(jī)變量ξ的分布列為

ξ01xP15p310且Eξ=1.1,則p=______;x=______.答案:由15+p+310=1,得p=12.由Eξ=0×15+1×12+310x=1.1,得x=2.故為12;2.17.已知二項分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:118.一口袋內(nèi)裝有5個黃球,3個紅球,現(xiàn)從袋中往外取球,每次取出一個,取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次時停止,停止時取球的次數(shù)ξ是一個隨機(jī)變量,則P(ξ=12)=______.(填算式)答案:若ξ=12,則取12次停止,第12次取出的是紅球,前11次中有9次是紅球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2

故為C911(38)10(58)219.一個底面是正三角形的三棱柱的側(cè)視圖如圖所示,則該幾何體的側(cè)面積等于()A.3B.6C.23D.2答案:由正視圖知:三棱柱是以底面邊長為2,高為1的正三棱柱,側(cè)面積為3×2×1=6,故為:B.20.已知直線l:ax+by=1(ab>0)經(jīng)過點P(1,4),則l在兩坐標(biāo)軸上的截距之和的最小值是______.答案:∵直線l:ax+by=1(ab>0)經(jīng)過點P(1,4),∴a+4b=1,故a、b都是正數(shù).故直線l:ax+by=1,此直線在x、y軸上的截距分別為1a、1b,則l在兩坐標(biāo)軸上的截距之和為1a+1b=a+4ba+a+4bb=5+4ba+ab≥5+24ba?ab=9,當(dāng)且僅當(dāng)4ba=ab時,取等號,故為9.21.若a>b>0,則,,,從大到小是_____答案:>>>解析:,又ab>0,;即。故有:>>>22.執(zhí)行如圖所示的程序框圖,輸出的M的值為()

A.17

B.53

C.161

D.485

答案:C23.以下關(guān)于排序的說法中,正確的是(

)A.排序就是將數(shù)按從小到大的順序排序B.排序只有兩種方法,即直接插入排序和冒泡排序C.用冒泡排序把一列數(shù)從小到大排序時,最小的數(shù)逐趟向上漂浮D.用冒泡排序把一列數(shù)從小到大排序時,最大的數(shù)逐趟向上漂浮答案:C解析:由冒泡排序的特點知C正確.24.已知兩點分別為A(4,3)和B(7,-1),則這兩點之間的距離為()A.1B.2C.3D.5答案:∵A(4,3)和B(7,-1),∴AB=(4-7)2+(3+1)2=5故選D.25.己知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N*,x∈A,y∈B,使B中元素y=3x+1和A中的元素x對應(yīng),則a=______,k=______.答案:若x∈A,y∈B,使B中元素y=3x+1和A中的元素x對應(yīng),則當(dāng)x=1時,y=4;當(dāng)x=2時,y=7;當(dāng)x=3時,y=10;當(dāng)x=k時,y=3k+1;又由a∈N*,∴a4≠10,則a2+3a=10,a4=3k+1解得a=2,k=5故為:2,526.如圖,小圓圈表示網(wǎng)絡(luò)的結(jié)點,結(jié)點之間的連線表示它們有網(wǎng)線相聯(lián),連線標(biāo)注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量,現(xiàn)從結(jié)點B向結(jié)點A傳遞信息,信息可以分開沿不同的路線同時傳遞,則單位時間內(nèi)傳遞的最大信息量為()

A.26

B.24

C.20

D.19

答案:D27.直角三角形兩直角邊邊長分別為3和4,將此三角形繞其斜邊旋轉(zhuǎn)一周,求得到的旋轉(zhuǎn)體的表面積和體積.答案:根據(jù)題意,所求旋轉(zhuǎn)體由兩個同底的圓錐拼接而成它的底面半徑等于直角三角形斜邊上的高,高分別等于兩條直角邊在斜邊的射影長∵兩直角邊邊長分別為3和4,∴斜邊長為32+42=5,由面積公式可得斜邊上的高為h=3×45=125可得所求旋轉(zhuǎn)體的底面半徑r=125因此,兩個圓錐的側(cè)面積分別為S上側(cè)面=π×125×4=48π5;S下側(cè)面=π×125×3=36π5∴旋轉(zhuǎn)體的表面積S=48π5+36π5=84π5由錐體的體積公式,可得旋轉(zhuǎn)體的體積為V=13π×(125)2×5=48π528.若圖中的直線l1,l2,l3的斜率為k1,k2,k3則()

A.k1<k2<k3

B.k3<k1<k2

C.k2<k1<k3

D.k3<k2<k1

答案:C29.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=log2xB.f(x)=1xC.f(x)=|x|D.f(x)=2x答案:∵函數(shù)y=1x定義域為x>0,又函數(shù)f(x)=log2x定義域x>0,故選A.30.不等式>1–log2x的解是(

A.x≥2

B.x>1

C.1xx>2答案:B31.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)

A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A:當(dāng)x<-3時不等式|x-5|+|x+3|≥10可化為:-(x-5)-(x+3)≥10解得:x≤-4當(dāng)-3≤x≤5時不等式|x-5|+|x+3|≥10可化為:-(x-5)+(x+3)=8≥10恒不成立當(dāng)x>5時不等式|x-5|+|x+3|≥10可化為:(x-5)+(x+3)≥10解得:x≥6故不等式|x-5|+|x+3|≥10解集為:(-∞,-4]∪[6,+∞).B:圓ρ=-2sinθ即ρ2=-2ρsinθ,即x2+y2+2y=0,即x2+(y+1)2=1.表示以(0,-1)為圓心,半徑等于1的圓,故圓心的極坐標(biāo)為(1,3π2).C:由題意,DF=CF=22,BE=1,BF=2,由DF?FC=AF?BF,得22?22=AF?2,∴AF=4,又BF=2,BE=1,∴AE=7;由切割線定理得CE2=BE?EA=1×7=7.∴CE=7.故為:(-∞,-4]∪[6,+∞);(1,3π2)(不唯一);7.32.點O是四邊形ABCD內(nèi)一點,滿足OA+OB+OC=0,若AB+AD+DC=λAO,則λ=______.答案:設(shè)BC中點為E,連接OE.則OB+OC=2OE,又有已知OB+OC=AO,所以AO=2OE,A,O,E三點都在BC邊的中線上,且|AO|=2|OE|,所以O(shè)為△ABC重心.AB+AD+DC=

AB+(AD+DC)=AB+AC=2AE=2×32AO=3AO,∴λ=3故為:3.33.若=(2,-3,1)是平面α的一個法向量,則下列向量中能作為平面α的法向量的是()

A.(0,-3,1)

B.(2,0,1)

C.(-2,-3,1)

D.(-2,3,-1)答案:D34.若kxy-8x+9y-12=0表示兩條直線,則實數(shù)k的值及兩直線所成的角分別是()

A.8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論