版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年浙江醫(yī)藥高等??茖W校高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.若拋物線y2=2px(p>0)的焦點與雙曲線的右焦點重合,則p的值為()
A.2
B.4
C.8
D.4答案:C2.由9個正數組成的矩陣
中,每行中的三個數成等差數列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比數列,給出下列判斷:①第2列a12,a22,a32必成等比數列;②第1列a11,a21,a31不一定成等比數列;③a12+a32≥a21+a23;④若9個數之和等于9,則a22≥1.其中正確的個數有()
A.1個
B.2個
C.3個
D.4個答案:B3.已知a=(1,-2,1),a+b=(3,-6,3),則b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故選A.4.(參數方程與極坐標)已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點,M(12,0),則|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:225.已知點A(5,0)和⊙B:(x+5)2+y2=36,P是⊙B上的動點,直線BP與線段AP的垂直平分線交于點Q.
(1)證明點Q的軌跡是雙曲線,并求出軌跡方程.
(2)若(BQ+BA)?QA=0,求點Q的坐標.答案:(1)∵點Q在線段AP的垂直平分線上,∴|QP|=|QA|,∴||BQ|-|PQ||=||BQ|-|AQ||=6.∴點Q的軌跡是以A、B為焦點的雙曲線.(4′)其軌跡方程是x29-y216=1.(7′)(2)以A、B、Q為三個頂點作平行四邊形ABQC,則BQ+BA=BC∵(BQ+BA)?QA=0,∴BC?QC=0,∴平行四邊形ABQC是菱形,∴|BA|=|BQ|.(8′)∴點Q在圓(x+5)2+y2=100上.解方程組(x+5)2+y2=100x29-y216=1.(10′)得Q(-395,±485)或Q(215,±865).(12′)6.在平面直角坐標系中,雙曲線Γ的中心在原點,它的一個焦點坐標為(5,0),e1=(2,1)、e2=(2,-1)分別是兩條漸近線的方向向量.任取雙曲線Γ上的點P,若OP=ae1+be2(a、b∈R),則a、b滿足的一個等式是______.答案:因為e1=(2,1)、e2=(2,-1)是漸進線方向向量,所以雙曲線漸近線方程為y=±12x,又c=5,∴a=2,b=1雙曲線方程為x24-y2=1,OP=ae1+be2=(2a+2b,a-b),∴(2a+2b)24-(a-b)2=1,化簡得4ab=1.故為4ab=1.7.已知向量,,則“,λ∈R”成立的必要不充分條件是()
A.
B與方向相同
C.
D.答案:D8.(難線性運算、坐標運算)已知0<x<1,0<y<1,求M=x2+y2+x2+(1-y)2+(1-x)2+y2+(1-x)2+(1-y)2的最小值.答案:設A(0,0),B(1,0),C(1,1),D(0,1),P(x,y),則M=|PA|+|PD|+|PB|+|PC|=(|PA|+|PC|)+(|PB|+|PD|)=(|AP|+|PC|)+(|BP|+|PD|)≥|AP+PC|+|BP+PD|=|AC|+|BD|.而AC=(1,1),BD=(-1,1),得|AC|+|BD|=2+2=22.∴M≥22,當AP與PC同向,BP與PD同向時取等號,設PC=λAP,PD=μBP,則1-x=λx,1-y=λy,-x=μx-μ,1-y=μy,解得λ=μ=1,x=y=12.所以,當x=y=12時,M的最小值為22.9.已知拋物線C1:x2=2py(p>0)上縱坐標為p的點到其焦點的距離為3.
(Ⅰ)求拋物線C1的方程;
(Ⅱ)過點P(0,-2)的直線交拋物線C1于A,B兩點,設拋物線C1在點A,B處的切線交于點M,
(ⅰ)求點M的軌跡C2的方程;
(ⅱ)若點Q為(ⅰ)中曲線C2上的動點,當直線AQ,BQ,PQ的斜率kAQ,kBQ,kPQ均存在時,試判斷kPQkAQ+kPQkBQ是否為常數?若是,求出這個常數;若不是,請說明理由.答案:(Ⅰ)由題意得p+p2=3,則p=2,…(3分)所以拋物線C1的方程為x2=4y.
…(5分)(Ⅱ)(?。┰O過點P(0,-2)的直線方程為y=kx-2,A(x1,y1),B(x2,y2),由y=kx-2x2=4y得x2-4kx+8=0.由△>0,得k<-2或k>2,x1+x2=4k,x1x2=8.…(7分)拋物線C1在點A,B處的切線方程分別為y-y1=x12(x-x1),y-y2=x22(x-x2),即y=x12x-x214,y=x22x-x224,由y=x12x-x214y=x22x-x224得x=x1+x22=2ky=x1x24=2.所以點M的軌跡C2的方程為y=2
(x<-22或x>22).…(10分)(ⅱ)設Q(m,2)(|m|>22),則kPQ=4m,kAQ=y1-2x1-m,kBQ=y2-2x2-m.…(11分)所以kPQkAQ+kPQkBQ=4m(1kAQ+1kBQ)=4m(x1-my1-2+x2-my2-2)…(12分)=4m[(x1-m)(y2-2)+(x2-m)(y1-2)(y1-2)(y2-2)]=4m[2kx1x2-(mk+4)(x1+x2)+8mk2x1x2-4k(x1+x2)+16]=4m[16k-(mk+4)?4k+8m8k2-4k?4k+16]=4m[8m-4mk216-8k2]=4m[4m(2-k2)8(2-k2)]=2,即kPQkAQ+kPQkBQ為常數2.
…(15分)10.如圖,從圓O外一點A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長為______.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.11.若A(x,5-x,2x-1),B(1,x+2,2-x),當||取最小值時,x的值等于(
)
A.
B.
C.
D.答案:C12.已知三個向量a,b,c不共面,并且p=a+b-c,q=2a-3b-5c,r=-7a+18b+22c,向量p,q,r是否共面?答案:解:實數λ,μ,使p=λq+μr,則a+b-c=(2λ-7μ)a+(-3λ+18μ)b+(-5λ+22μ)c∵a,b,c不共面,∴∴即存在實數,,使p=λq+μr,故向量p、q、r共面.13.設P、Q為兩個非空實數集合,定義集合P+Q={x|x=a+b,a∈P,b∈Q},若P={0,2,5},Q={1,2,6},則P+Q中元素的個數是______.答案:∵a∈P,b∈Q,∴a可以為0,2,5三個數,b可以為1,2,6三個數,∴x=0+1=1,x=0+2=2,x=0+6=6,x=2+1=3,x=2+2=4,x=2+6=8,x=5+1=6,x=5+2=7,x=5+6=11,∴P+Q={x|x=a+b,a∈P,b∈Q}={1,2,3,4,6,7,8,11},有8個元素.故為8.14.在曲線(t為參數)上的點是()
A.(1,-1)
B.(4,21)
C.(7,89)
D.答案:A15.設ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,則a1x1,a2x2,…,anxn的值中,現給出以下結論,其中你認為正確的是______.
①都大于1②都小于1③至少有一個不大于1④至多有一個不小于1⑤至少有一個不小于1.答案:由題意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,對于a1x1,a2x2,…,anxn的值中,若①成立,則分母都小于分子,由于分母的平方和為1,故可得a12+a22+…an2大于1,這與已知矛盾,故①不對;若②成立,則分母都大于分子,由于分母的平方和為1,故可得a12+a22+…an2小于1,這與已知矛盾,故②不對;由于③與①兩結論互否,故③對④不可能成立,a1x1,a2x2,…,anxn的值中有多于一個的比值大于1是可以的,故不對⑤與②兩結論互否,故正確綜上③⑤兩結論正確故為③⑤16.如圖是一個方形迷宮,甲、乙兩人分別位于迷宮的A、B兩處,兩人同時以每一分鐘一格的速度向東、西、南、北四個方向行走,已知甲向東、西行走的概率都為14,向南、北行走的概率為13和p,乙向東、西、南、北四個方向行走的概率均為q
(1)p和q的值;
(2)問最少幾分鐘,甲、乙二人相遇?并求出最短時間內可以相遇的概率.答案:(1)∵14+14+13+p=1,∴p=16,∵4q=1,∴q=14(2)t=2甲、乙兩人可以相遇(如圖,在C、D、E三處相遇)
設在C、D、E三處相遇的概率分別為PC、PD、PE,則:PC=(16×16)×(14×14)=1576PD=2(16×14)×2(14×14)=196PE=(14×14)×(14×14)=1256PC+PD+PE=372304即所求的概率為37230417.從橢圓
x2a2+y2b2=1(a>b>0)上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且AB∥OP,|F1A|=10+5,求橢圓的方程.答案:∵AB∥OP∴PF1F1O=BOOA?PF1=bca又∵PF1⊥x軸∴c2a2+y2b2=1?y=b2a∴b=c由a+c=10+5b=ca2=b2+c2解得:a=10b=5c=5∴橢圓方程為x210+y25=1.18.如圖,四邊形ABCD是圓O的內接四邊形,延長AB和DC相交于點P.若PB=1,PD=3,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.19.設矩陣M=.32-121232.的逆矩陣是M-1=.abcd.,則a+c的值為______.答案:由題意,矩陣M的行列式為.32-121232.=32×32+12×12=1∴矩陣M=.32-121232.的逆矩陣是M-1=.3212-1232.∴a+c=3-12故為3-1220.設雙曲線的焦點在x軸上,兩條漸近線為y=±x,則雙曲線的離心率e=()
A.5
B.
C.
D.答案:C21.與
向量
=(2,-1,2)共線且滿足方程=-18的向量為()
A.不存在
B.-2
C.(-4,2,-4)
D.(4,-2,4)答案:D22.已知a,b,c是正實數,且a+b+c=1,則的最小值為(
)A.3B.6C.9D.12答案:C解析:本題考查均值不等式等知識。將1代入中,得,當且僅當,又,故時不等式取,選C。23.某細胞在培養(yǎng)過程中,每15分鐘分裂一次(由1個細胞分裂成2個),則經過兩個小時后,1個這樣的細胞可以分裂成______個.答案:由于每15分鐘分裂一次,則兩個小時共分裂8次.一個這樣的細胞經過一次分裂后,由1個分裂成2個;經過2次分裂后,由1個分裂成22個;…經過8次分裂后,由1個分裂成28個.∴1個這樣的細胞經過兩個小時后,共分裂成28個,即256個.故為:25624.x2+(m-3)x+m=0
一個根大于1,一個根小于1,m的范圍是______.答案:設f(x)=x2+(m-3)x+m,則∵x2+(m-3)x+m=0一個根大于1,一個根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故為m<1.25.以橢圓上一點和橢圓兩焦點為頂點的三角形的面積最大值為1時,橢圓長軸的最小值為()
A.
B.
C.2
D.2
答案:D26.參數方程為t為參數)表示的曲線是()
A.一條直線
B.兩條直線
C.一條射線
D.兩條射線答案:D27.如果圓x2+y2+Gx+Ey+F=0與x軸相切于原點,那么()A.F=0,G≠0,E≠0B.E=0,F=0,G≠0C.G=0,F=0,E≠0D.G=0,E=0,F≠0答案:圓與x軸相切于原點,則圓心在y軸上,G=0,圓心的縱坐標的絕對值等于半徑,F=0,E≠0.故選C.28.直線(t為參數)的傾斜角是()
A.20°
B.70°
C.45°
D.135°答案:D29.在空間直角坐標系中,O為坐標原點,設A(,,),B(,,0),C(
,,),則(
)
A.OA⊥AB
B.AB⊥AC
C.AC⊥BC
D.OB⊥OC答案:C30.某總體容量為M,其中帶有標記的有N個,現用簡單隨機抽樣方法從中抽出一個容量為m的樣本,則抽取的m個個體中帶有標記的個數估計為()A.mNMB.mMNC.MNmD.N答案:由題意知,總體中帶有標記的魚所占比例是NM,故樣本中帶有標記的個數估計為mNM,故選A.31.如圖,在棱長為2的正方體ABCD-A1B1C1D1中,以底面正方形ABCD的中心為坐標原點O,分別以射線OB,OC,AA1的指向為x軸、y軸、z軸的正方向,建立空間直角坐標系.試寫出正方體八個頂點的坐標.答案:解設i,j,k分別是與x軸、y軸、z軸的正方向方向相同的單位坐標向量.因為底面正方形的中心為O,邊長為2,所以OB=2.由于點B在x軸的正半軸上,所以OB=2i,即點B的坐標為(2,0,0).同理可得C(0,2,0),D(-2,0,0),A(0,-2,0).又OB1=OB+BB1=2i+2k,所以OB1=(2,0,2).即點B1的坐標為(2,0,2).同理可得C1(0,2,2),D1(-2,0,2),A1(0,-2,2).32.執(zhí)行如圖所示的程序框圖,輸出的S值為()
A.2
B.4
C.8
D.16
答案:C33.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗,根據收集到的數據(如下表),由最小二乘法求得回歸直線方程y=0.68x+54.6
表中有一個數據模糊不清,請你推斷出該數據的值為()A.68B.68.2C.69D.75答案:設表中有一個模糊看不清數據為m.由表中數據得:.x=30,.y=m+3075,由于由最小二乘法求得回歸方程y=0.68x+54.6.將x=30,y=m+3075代入回歸直線方程,得m=68.故選A.34.向量a、b滿足|a|=1,|b|=2,且a與b的夾角為π3,則|a+2b|=______.答案:∵|a|=1,|b|=2,且a與b的夾角為π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故為:2135.如果一個水平放置的圖形的斜二測直觀圖是一個底面為45°,腰和上底均為1的等腰梯形,那么原平面圖形的面積是()
A.2+
B.
C.
D.1+答案:A36.已知動點P(x,y)滿足(x+2)2+y2-(x-2)2+y2=2,則動點P的軌跡是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即動點P(x,y)到兩定點(-2,0),(2,0)的距離之差等于2,由雙曲線定義知動點P的軌跡是雙曲線的一支(右支).:雙曲線的一支(右支).37.若平面向量a與b的夾角為120°,a=(2,0),|b|=1,則|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a
2+4a?b+4
b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故為:238.圓柱的底面積為S,側面展開圖為正方形,那么這個圓柱的側面積為()A.πSB.2πSC.3πSD.4πS答案:設圓柱的底面半徑是R,母線長是l,∵圓柱的底面積為S,側面展開圖為正方形,∴πR2=S,且l=2πR,∴圓柱的側面積為2πRl=4πS.故選D.39.已知平行四邊形ABCD,下列正確的是()
A.
B.
C.
D.答案:B40.將參數方程x=2sinθy=1+2cos2θ(θ為參數,θ∈R)化為普通方程,所得方程是______.答案:由x=2sinθ
①y=1+2cos2θ
②,因為θ∈R,所以-1≤sinθ≤1,則-2≤x≤2.由①兩邊平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故為y=-x2+3(-2≤x≤2).41.電子跳蚤游戲盤是如圖所示的△ABC,AB=8,AC=9,BC=10,如果跳蚤開始時在BC邊的點P0處,BP0=4.跳蚤第一步從P0跳到AC邊的P1(第1次落點)處,且CP1=CP0;第二步從P1跳到AB邊的P2(第2次落點)處,且AP2=AP1;第三步從P2跳到BC邊的P3(第3次落點)處,且BP3=BP2;跳蚤按上述規(guī)則一直跳下去,第n次落點為Pn(n為正整數),則點P2010與C間的距離為______答案:∵由題意可以發(fā)現每邊各有兩點,其中BC邊上P0,P6,P12…重合,P3,P9,P15…重合,AC邊上P1,P7,P13…重合,P4,P10,P16…重合,AB邊上P2,P8,P14…重合,P5,P11,P17…重合.發(fā)現規(guī)律2010為六的倍數所以與P0重合,∴與C點之間的距離為6故為:642.點M,N分別是曲線ρsinθ=2和ρ=2cosθ上的動點,則|MN|的最小值是______.答案:∵曲線ρsinθ=2和ρ=2cosθ分別為:y=2和x2+y2=2x,即直線y=2和圓心在(1,0)半徑為1的圓.顯然|MN|的最小值為1.故為:1.43.設△ABC是邊長為1的正三角形,則|CA+CB|=______.答案:∵△ABC是邊長為1的正三角形,∴|CA|=1,|CB|=1,CA?CB=1×1×cosπ3=12∴|CA+CB|=CA2+2CA?CB+CB2=1+1+
2×12=3,故為:344.在平面直角坐標系xOy中,已知點A(0,0),B(-2,0),C(-2,1).設k為非零實數,矩陣M=.k001.,N=.0110.,點A、B、C在矩陣MN對應的變換下得到點分別為A1、B1、C1,△A1B1C1的面積是△ABC面積的2倍,
(1)求k的值.
(2)判斷變換MN是否可逆,如果可逆,求矩陣MN的逆矩陣;如不可逆,說明理由.答案:(1)由題設得MN=k0010110=01k0,由01k000-20-21=000-2k-2,可知A1(0,0)、B1(0,-2)、C1(k,-2).計算得△ABC面積的面積是1,△A1B1C1的面積是|k|,則由題設知:|k|=2×1=2.所以k的值為2或-2.(2)令MN=A,設B=abcd是A的逆矩陣,則AB=0k10abcd=1001?ckdkab=1001?ck=1dk=0a=0b=1①當k≠0時,上式?a=0b=1c=1kd=0,MN可逆,(8分)所以MN的逆矩陣是B=011k0.(10分)②當k≠0時,上式不可能成立,MN不可逆,(11分).45.寫出1×2×3×4×5×6的一個算法.答案:按照逐一相乘的程序進行第一步:計算1×2,得到2;第二步:將第一步的運算結果2與3相乘,得到6;第三步:將第二步的運算結果6與4相乘,得到24;第四步:將第三步的運算結果24與5相乘,得到120;第五步:將第四的運算結果120與6相乘,得到720;第六步:輸出結果.46.一個正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點,則在原來的正方體中()A.AB∥CDB.AB與CD相交C.AB⊥CDD.AB與CD所成的角為60°答案:將正方體的展開圖,還原為正方體,AB,CD為相鄰表面,且無公共頂點的兩條面上的對角線∴AB與CD所成的角為60°故選D.47.在平面直角坐標系中,已知向量a=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).
(1)若AB⊥a,且|AB|=5|OA|(O為坐標原點),求向量OB;
(2)若向量AC與向量a共線,當k>4,且tsinθ取最大值4時,求OA?OC.答案:(1)∵點A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB?a=(n-8,t)?(-1,2)=0,得n=2t+8.則AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,當t=8時,n=24;當t=-8時,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC與向量a共線,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故當sinθ=4k時,tsinθ取最大值32k,有32k=4,得k=8.這時,sinθ=12,k=8,tsinθ=4,得t=8,則OC=(4,8).∴OA?OC=(8,0)?(4,8)=32.48.底面直徑和高都是4cm的圓柱的側面積為______cm2.答案:∵圓柱的底面直徑和高都是4cm,∴圓柱的底面圓的周長是2π×2=4π∴圓柱的側面積是4π×4=16π,故為:16π.49.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負時,由韋達定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根時,-1≤a≤178故為:-1≤a≤17850.設F1,F2是雙曲線x29-y216=1的兩個焦點,點P在雙曲線上,且∠F1PF2=90°,求△F1PF2的面積.答案:雙曲線x29-y216=1的a=3,c=5,不妨設PF1>PF2,則PF1-PF2=2a=6F1F22=PF12+PF22,而F1F2=2c=10得PF12+PF22=(PF1-PF2)2+2PF1?PF2=100∴PF1?PF2=32∴S=12PF1?PF2=16△F1PF2的面積16.第2卷一.綜合題(共50題)1.“所有10的倍數都是5的倍數,某數是10的倍數,則該數是5的倍數,”上述推理()
A.完全正確
B.推理形式不正確
C.錯誤,因為大小前提不一致
D.錯誤,因為大前提錯誤答案:A2.在曲線(t為參數)上的點是()
A.(1,-1)
B.(4,21)
C.(7,89)
D.答案:A3.已知A、B、M三點不共線,對于平面ABM外的任意一點O,確定在下列條件下,點P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據空間向量共面的推論,P位于平面ABM內的充要條件是,∴P與A、B、M不共面.4.x>1是x>2的()A.充分但不必要條件B.充要條件C.必要但不充分條件D.既不充分又不必要條件答案:由x>1,我們不一定能得出x>2,比如x=1.5,所以x>1不是x>2的充分條件;∵x>2>1,∴由x>2,能得出x>1,∴x>1是x>2的必要條件∴x>1是x>2的必要但不充分條件故選C.5.已知x1,x2,…,xn都是正數,且x1+x2+…+xn=1,求證:
++…+≥n2.答案:證明略解析:證明
++…+=(x1+x2+…+xn)(
++…+)≥=n2.6.已知拋物線方程為y2=2px(p>0),過該拋物線焦點F且不與x軸垂直的直線AB交拋物線于A,B兩點,過點A,點B分別作AM,BN垂直于拋物線的準線,分別交準線于M,N兩點,那么∠MFN必是()
A.銳角
B.直角
C.鈍角
D.以上皆有可能答案:B7.已知平面向量a,b,c滿足a+b+c=0,且a與b的夾角為135°,c與b的夾角為120°,|c|=2,則|a|=______.答案:∵a+b+c=0∴三個向量首尾相接后,構成一個三角形且a與b的夾角為135°,c與b的夾角為120°,|c|=2,故所得三角形如下圖示:其中∠C=45°,∠A=60°,AB=2∴|a|=AB?Sin∠Asin∠C=6故為:68.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點D的坐標.答案:設D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).9.傾斜角為60°的直線的斜率為______.答案:因為直線的傾斜角為60°,所以直線的斜率k=tan60°=3.故為:3.10.同時擲兩顆骰子,得到的點數和為4的概率是______.答案:同時擲兩顆骰子得到的點數共有36種情況,即(1,1)(1,2)(1,3)(1,4)(1,5)(1,6),(2,1)(2,2)(2,3)(2,4)(2,5)(2,6),(3,1)(3,2)(3,3)(3,4)(3,5)(3,6),(4,1)(4,2)(4,3)(4,4)(4,5)(4,6),(5,1)(5,2)(5,3)(5,4)(5,5)(5,6),(6,1)(6,2)(6,3)(6,4)(6,5)(6,6),而和為4的情況數有3種,即(1,3)(2,2)(3,1)所以所求概率為336=112,故為:11211.命題“若A∪B=A,則A∩B=B”的否命題是()A.若A∪B≠A,則A∩B≠BB.若A∩B=B,則A∪B=AC.若A∩B≠A,則A∪B≠BD.若A∪B=B,則A∩B=A答案:“若A∪B=A,則A∩B=B”的否命題:“若A∪B≠A則A∩B≠B”故選A.12.如圖1,一個“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長為2,則半圓錐的高為3故V=13×12×π×3=36π故選B13.若x~B(3,13),則P(x=1)=______.答案:∵x~B(3,13),∴P(x=1)=C13(13)(1-13)2=49.故為:49.14.方程|x|-1=2y-y2表示的曲線為()A.兩個半圓B.一個圓C.半個圓D.兩個圓答案:兩邊平方整理得:(|x|-1)2=2y-y2,化簡得(|x|-1)2+(y-1)2=1,由|x|-1≥0得x≥1或x≤-1,當x≥1時,方程為(x-1)2+(y-1)2=1,表示圓心為(1,1)且半徑為1的圓的右半圓;當x≤1時,方程為(x+1)2+(y-1)2=1,表示圓心為(-1,1)且半徑為1的圓的右半圓綜上所述,得方程|x|-1=2y-y2表示的曲線為為兩個半圓故選:A15.中心在坐標原點,離心率為的雙曲線的焦點在y軸上,則它的漸近線方程為()
A.
B.
C.
D.答案:D16.下列說法正確的是()
A.向量
與向量是共線向量,則A、B、C、D必在同一直線上
B.向量與平行,則與的方向相同或相反
C.向量的長度與向量的長度相等
D.單位向量都相等答案:C17.一個正三棱錐的底面邊長等于一個球的半徑,該正三棱錐的高等于這個球的直徑,則球的體積與正三棱錐體積的比值為()
A.
B.
C.
D.答案:A18.(選做題)
設集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實數a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內直接求解情況比較多,考慮補集設全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內∴,∴,∴,∴∴實數a的取值范圍為.19.與原數據單位不一樣的是()
A.眾數
B.平均數
C.標準差
D.方差答案:D20.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.
B.(坐標系與參數方程選做題)在極坐標系中,圓ρ=-2sinθ的圓心的極坐標是______.
C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A.∵|x-5|+|x+3|≥10,∴當x≥5時,x-5+x+3≥10,∴x≥6;當x≤-3時,有5-x+(-x-3)≥10,∴x≤-4;當-4<x<5時,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標為(-1,0),∴其極坐標是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.21.直線和圓交于兩點,則的中點
坐標為(
)A.B.C.D.答案:D解析:,得,中點為22.如圖,⊙O中弦AB,CD相交于點P,已知AP=3,BP=2,CP=1,則DP=()
A.3
B.4
C.5
D.6答案:D23.執(zhí)行如圖所示的程序框圖,輸出的S值為()
A.2
B.4
C.8
D.16
答案:C24.如圖,以1×3方格紙中的格點為起點和終點的所有向量中,有多少種大小不同的模?有多少種不同的方向?
答案:模為1的向量;模為2的向量;模為3的向量;模為2的向量;模為5的向量;模為10的向量共有6個模,進而分析方向,正方形的邊對應的向量共有四個方向,邊長為1的正方形的對角線對應的向量共四個方向;1×2的矩形的對角線對應的向量共四個方向;1×3的矩形對角線對應的向量共有四個方向共有16個方向25.拋物線的頂點在原點,焦點與橢圓=1的一個焦點重合,則拋物線方程是()
A.x2=±8y
B.y2=±8x
C.x2=±4y
D.y2=±4x答案:A26.在參數方程所表示的曲線上有B、C兩點,它們對應的參數值分別為t1、t2,則線段BC的中點M對應的參數值是()
A.
B.
C.
D.答案:B27.設U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}28.“龜兔賽跑”講述了這樣的故事:領先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發(fā)現烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點…,用S1、S2分別表示烏龜和兔子所行的路程,t為時間,則下圖與故事情節(jié)相吻合的是()
A.
B.
C.
D.
答案:B29.復數i2000=______.答案:復數i2009=i4×500=i0=1故為:130.BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于點D,則圖中共有直角三角形的個數是()A.8B.7C.6D.5答案:∵AP⊥平面ABC,BC?平面ABC,∴PA⊥BC,又PD⊥BC于D,連接AD,PD∩PA=A,∴BC⊥平面PAD,AD?平面PAD,∴BC⊥AD;又BC是Rt△ABC的斜邊,∴∠BAC為直角,∴圖中的直角三角形有:△ABC,△PAC,△PAB,△PAD,△PDC,△PDB,△ADC,△ADB.故為:8.31.若方程sin2x+4sinx+m=0有實數解,則m的取值范圍是(
)
A、R
B、(-∞,-5]∪[3,+∞)
C、(-5,3)
D、[-5,3]答案:D32.今天為星期六,則今天后的第22010天是()A.星期一B.星期二C.星期四D.星期日答案:∵22010=8670=(7+1)670=C6700×7670×10+C6701×7669×11+C6702×7668×12+…+C6702010×70×1670∴22010除7的余數是1故今天為星期六,則今天后的第22010天是星期日故選D33.直線y=3x的傾斜角為______.答案:∵直線y=3x的斜率是3,∴直線的傾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故為:60°34.先后2次拋擲一枚骰子,將得到的點數分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.答案:(1)先后2次拋擲一枚骰子,將得到的點數分別記為a,b,事件總數為6×6=36.∵直線ax+by+c=0與圓x2+y2=1相切的充要條件是5a2+b2=1即:a2+b2=25,由于a,b∈{1,2,3,4,5,6}∴滿足條件的情況只有a=3,b=4,c=5;或a=4,b=3,c=5兩種情況.∴直線ax+by+c=0與圓x2+y2=1相切的概率是236=118(2)先后2次拋擲一枚骰子,將得到的點數分別記為a,b,事件總數為6×6=36.∵三角形的一邊長為5∴當a=1時,b=5,(1,5,5)1種當a=2時,b=5,(2,5,5)1種當a=3時,b=3,5,(3,3,5),(3,5,5)2種當a=4時,b=4,5,(4,4,5),(4,5,5)2種當a=5時,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6種當a=6時,b=5,6,(6,5,5),(6,6,5)2種故滿足條件的不同情況共有14種故三條線段能圍成不同的等腰三角形的概率為1436=718.35.規(guī)定運算.abcd.=ad-bc,則.1i-i2.=______.答案:根據題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.36.曲線y=log2x在M=0110作用下變換的結果是曲線方程______.答案:設P(x,y)是曲線y=log2x上的任一點,P1(x′,y′)是P(x,y)在矩陣M=0110對應變換作用下新曲線上的對應點,則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結果是曲線方程y=2x故為:y=2x37.如圖,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分別為AD,BC上點,且EF=3,EF∥AB,則梯形ABFE與梯形EFCD的面積比為______.答案:∵E,F分別為AD,BC上點,且EF=3,EF∥AB,∴EF是梯形的中位線,設兩個梯形的高是h,∴梯形ABFE的面積是(4+3)h2=7h2,梯形EFCD的面積(2+3)h2=5h2∴梯形ABFE與梯形EFCD的面積比為7h25h2=75,故為:7:538.在平面直角坐標系中,橫坐標、縱坐標均為有理數的點稱為有理點.試根據這一定義,證明下列命題:若直線y=kx+b(k≠0)經過點M(2,1),則此直線不能經過兩個有理點.答案:證明:假設此直線上有兩個有理點A(x1,y1),B(x2,y2),其中x1、y1、x2、y2均為有理數,則有y1=kx1+b,y2=kx2+b,兩式相減,得y1-y2=k(x1-x2).∵斜率k存在,∴x1≠x2,得k=y1-y2x1-x2.而有理數經過四則運算后還是有理數,故k為有理數.又由y1=kx1+b知,b也是有理數.又∵點M(2,1)在此直線上,∴1=2k+b,于是有2=1-bk(k≠0).此式左端為無理數,右端為有理數,顯然矛盾,故此直線不能經過兩個有理點.39.頻率分布直方圖的重心是()
A.眾數
B.中位數
C.標準差
D.平均數答案:D40.下列圖形中不一定是平面圖形的是(
)
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B41.一動圓與兩圓x2+y2=1和x2+y2-8x+12=0都外切,則動圓圓心軌跡為()A.圓B.橢圓C.雙曲線的一支D.拋物線答案:設動圓的圓心為P,半徑為r,而圓x2+y2=1的圓心為O(0,0),半徑為1;圓x2+y2-8x+12=0的圓心為F(4,0),半徑為2.依題意得|PF|=2+r|,|PO|=1+r,則|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以點P的軌跡是雙曲線的一支.故選C.42.若直線的參數方程為,則直線的斜率為(
)A.B.C.D.答案:D43.用行列式討論關于x,y
的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當m≠-1,m≠1時,D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當m=-1時,D=0,Dx≠0,方程組無解;…(2分)(3)當m=1時,D=Dx=Dy=0,方程組有無窮多組解,此時方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)44.已知方程x2-6x+a=0的兩個不等實根均大于2,則實數a的取值范圍為()
A.[4,9)
B.(4,9]
C.(4,9)
D.(8,9)答案:D45.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圓心在x+y=0上,圓心的縱橫坐標值相反,顯然能排除C、D;驗證:A中圓心(-1,1)到兩直線x-y=0的距離是|2|2=2;圓心(-1,1)到直線x-y-4=0的距離是62=32≠2.故A錯誤.故選B.46.如圖所示,已知點P為菱形ABCD外一點,且PA⊥面ABCD,PA=AD=AC,點F為PC中點,則二面角CBFD的正切值為()
A.
B.
C.
D.
答案:D47.
如圖,平面內向量,的夾角為90°,,的夾角為30°,且||=2,||=1,||=2,若=λ+2
,則λ等()
A.
B.1
C.
D.2
答案:D48.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過點C作⊙O的切線CD,D為切點,若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據切線長定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.49.設與都是直線Ax+By+C=0(AB≠0)的方向向量,則下列關于與的敘述正確的是()
A.=
B.與同向
C.∥
D.與有相同的位置向量答案:C50.設有三個命題:“①0<12<1.②函數f(x)=log
12x是減函數.③當0<a<1時,函數f(x)=logax是減函數”.當它們構成三段論時,其“小前提”是______(填序號).答案:三段話寫成三段論是:大前提:當0<a<1時,函數f(x)=logax是減函數,小前提:0<12<1,結論:函數f(x)=log
12x是減函數.其“小前提”是①.故為:①.第3卷一.綜合題(共50題)1.曲線C:x=t-2y=1t+1(t為參數)的對稱中心坐標是______.答案:曲線C:x=t-2y=1t+1(t為參數)即y-1=1x+2,其對稱中心為(-2,1).故為:(-2,1).2.已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a等于(
)
A.2
B.1
C.0
D.-1答案:D3.在用樣本頻率估計總體分布的過程中,下列說法正確的是()A.總體容量越大,估計越精確B.總體容量越小,估計越精確C.樣本容量越大,估計越精確D.樣本容量越小,估計越精確答案:∵用樣本頻率估計總體分布的過程中,估計的是否準確與總體的數量無關,只與樣本容量在總體中所占的比例有關,∴樣本容量越大,估計的月準確,故選C.4.探測某片森林知道,可采伐的木材有10萬立方米.設森林可采伐木材的年平均增長率為8%,則經過______年,可采伐的木材增加到40萬立方米.答案:設經過n年可采伐本材達到40萬立方米則有10×(1+8%)n=40即(1+8%)n=4故有n=log1.084,解得n≈19即經過19年,可采伐的木材增加到40萬立方米故為195.已知點P1的球坐標是P1(4,,),P2的柱坐標是P2(2,,1),則|P1P2|=()
A.
B.
C.
D.4答案:A6.已知直線l的參數方程為x=3+12ty=7+32t(t為參數),曲線C的參數方程為x=4cosθy=4sinθ(θ為參數).
(I)將曲線C的參數方程轉化為普通方程;
(II)若直線l與曲線C相交于A、B兩點,試求線段AB的長.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.7.化簡下列各式:
(1)AB+DF+CD+BC+FA=______;
(2)(AB+MB)+(BO+BC)+OM=______.答案:(1)AB+DF+CD+BC+FA=(AB+BC+CD+DF)+FA=AF+FA=0;(2)(AB+MB)+(BO+BC)+OM=(AB+BC)+MB+(BO+OM)=AC+MB+BM=AC+(MB+BM)=AC+0=AC,故為:(1)0;(2)AC8.方程2x2+ky2=1表示的曲線是長軸在y軸的橢圓,則實數k的范圍是()A.(0,+∞)B.(2,+∞)C.(0,2)D.(2,0)答案:橢圓方程化為x212+y21k=1.焦點在y軸上,則1k>12,即k<2.又k>0,∴0<k<2.故選C.9.設函數g(x)=ex
x≤0lnx,x>0,則g(g(12))=______.答案:g(g(12))
=g(ln12)
=eln12=12故為:12.10.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()
A.1
B.2
C.3
D.5
答案:D11.拋物線C:y=x2上兩點M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設M(x1,x12),N(x2,x22),則MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因為MN=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,聯立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故為10.12.若直線l:ax+by=1與圓C:x2+y2=1有兩個不同交點,則點P(a,b)與圓C的位置關系是(
)
A.點在圓上
B.點在圓內
C.點在圓外
D.不能確定答案:C13.設隨機變量X~B(10,0.8),則D(2X+1)等于()
A.1.6
B.3.2
C.6.4
D.12.8答案:C14.算法:第一步
x=a;第二步
若b>x則x=b;第三步
若c>x,則x=c;
第四步
若d>x,則x=d;
第五步
輸出x.則輸出的x表示()A.a,b,c,d中的最大值B.a,b,c,d中的最小值C.將a,b,c,d由小到大排序D.將a,b,c,d由大到小排序答案:x=a,若b>x,則b>a,x=b,否則x=a,即x為a,b中較大的值;若c>x,則x=c,否則x仍為a,b中較大的值,即x為a,b,c中較大的值;若d>x,則x=d,否則x仍為a,b,c中較大的值,即x為a,b,c中較大的值.故x為a,b,c,d中最大的數,故選A.15.從一批羽毛球產品中任取一個,質量小于4.8
g的概率是0.3,質量不小于4.85
g的概率是0.32,那么質量在[4.8,4.85)g范圍內的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B16.直線y=2的傾斜角和斜率分別是()A.90°,斜率不存在B.90°,斜率為0C.180°,斜率為0D.0°,斜率為0答案:由題意,直線y=2的傾斜角是0°,斜率為0故選D.17.若定義運算a⊕b=b,a<ba,a≥b則函數f(x)=2x⊕(12)x的值域為______(用區(qū)間表示).答案:由題意畫出f(x)=2x?(12)x的圖象(實線部分),由圖可知f(x)的值域為[1,+∞).故為:[1,+∞).18.大家知道,在數列{an}中,若an=n,則sn=1+2+3+…+n=12n2+12n,若an=n2,則
sn=12+22+32+…+n2=13n3+12n2+16n,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.
問:(1)這種猜想,你認為正確嗎?
(2)不管猜想是否正確,這個結論是通過什么推理方法得到的?
(3)如果結論正確,請用數學歸納法給予證明.答案:(1)猜想正確;(2)這是一種類比推理的方法;(3)由類比可猜想,a=14,n=1時,a+b+c+d=1;n=2時,16a+8b+4c+d=9;n=3時,81a+27b+9c+d=36故解得a=14,b=12,c=14,∴sn=13+23+33+…+n3=14n4+12n3+14n2用數學歸納法證明:①n=1時,結論成立;②假設n=k時,結論成立,即13+23+33+…+k3=14k4+12k3+14k2=[k(k+1)2]2則n=k+1時,左邊=13+23+33+…+k3+(k+1)3=14k4+12k3+14k2+(k+1)3=[k(k+1)2]2+(k+1)3=(k+12)2(k2+4k+4)=[(k+1)(k+2)2]2=右邊,結論成立由①②可知,sn=13+23+33+…+n3=14n4+12n3+14n2,成立19.證明不等式的最適合的方法是()
A.綜合法
B.分析法
C.間接證法
D.合情推理法答案:B20.用行列式討論關于x,y
的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當m≠-1,m≠1時,D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當m=-1時,D=0,Dx≠0,方程組無解;…(2分)(3)當m=1時,D=Dx=Dy=0,方程組有無窮多組解,此時方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)21.已知0<α<π2,方程x2sinα+y2cosα=1表示焦點在y軸上的橢圓,則α的取值范圍______.答案:方程x2sinα+y2cosα=1化成標準形式得:x21sinα+y21cosα=1.∵方程表示焦點在y軸上的橢圓,∴1cosα>1sinα>0,解之得sinα>cosα>0∵0<α<π2,∴π4<α<π2,即α的取值范圍是(π4,π2)故為:(π4,π2)22.復數z=sin1+icos2在復平面內對應的點位于第______象限.答案:z對應的點為(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故為:四23.點P(,)與圓x2+y2=1的位置關系是()
A.在圓內
B.在圓外
C.在圓上
D.與t有關答案:C24.(理)在直角坐標系中,圓C的參數方程是x=2cosθy=2+2sinθ(θ為參數),以原點為極點,以x軸正半軸為極軸建立極坐標系,則圓C的圓心極坐標為______.答案:∵直角坐標系中,圓C的參數方程是x=2cosθy=2+2sinθ(θ為參數),∴x2+(y-2)2=4,∵以原點為極點,以x軸正半軸為極軸建立極坐標系,∴圓心坐標(0,2),r=2∵0=pcosθ,∴θ=π2,又p=r=2,∴圓C的圓心極坐標為(2,π2),故為:(2,π2).25.把方程化為以參數的參數方程是(
)A.B.C.D.答案:D解析:,取非零實數,而A,B,C中的的范圍有各自的限制26.命題“正數的絕對值等于它本身”的逆命題是______.答案:將命題“正數的絕對值等于它本身”改寫為“若一個數是正數,則其絕對值等于它本身”,所以逆命題是“若一個數的絕對值等于它本身,則這個數是正數”,即“絕對值等于它本身的數是正數”.故為:“絕對值等于它本身的數是正數”.27.(理)某單位有8名員工,其中有5名員工曾經參加過一種或幾種技能培訓,另外3名員工沒有參加過任何技能培訓,現要從8名員工中任選3人參加一種新的技能培訓;
(I)求恰好選到1名曾經參加過技能培訓的員工的概率;
(Ⅱ)這次培訓結束后,仍然沒有參加過任何技能培訓的員工人數X是一個隨機變量,求X的分布列和數學期望.答案:(I)由題意知本題是一個等可能事件的概率,∵試驗發(fā)生包含的事件是從8人中選3個,共有C83=56種結果,滿足條件的事件是恰好選到1名曾經參加過技能培訓的員工,共有C51C32=15∴恰好選到1名已參加過其他技能培訓的員工的概率P=1556(II)隨機變量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴隨機變量X的分布列是X0123P15615561528528∴X的數學期望是1×1556+2×
1528+3×528=15828.(選做題)某制藥企業(yè)為了對某種藥用液體進行生物測定,需要優(yōu)選培養(yǎng)溫度,實驗范圍定為29℃~63℃,精確度要求±1℃,用分數法進行優(yōu)選時,能保證找到最佳培養(yǎng)溫度需要最少實驗次數為(
)。答案:729.橢圓x=5cosαy=3sinα(α是參數)的一個焦點到相應準線的距離為______.答案:橢圓x=5cosαy=3sinα(α是參數)的標準方程為:x225+y29=1,它的右焦點(4,0),右準線方程為:x=254.一個焦點到相應準線的距離為:254-4=94.故為:94.30.中心在坐標原點,離心率為的雙曲線的焦點在y軸上,則它的漸近線方程為()
A.
B.
C.
D.答案:D31.(x+2y)4展開式中各項的系數和為______.答案:令x=y=1,可得(1+2)4=81故為:81.32.已知數列{an}的前n項和Sn=an2+bn=c
(a、b、c∈R),則“c=0”是“{an}是等差數列”的()A.充分非必要條件B.必要非充分條件C.充要條件D.既非充分也非必要條件答案:數列{an}的前n項和Sn=an2+bn+c根據等差數列的前n項和的公式,可以看出當c=0時,Sn=an2+bn表示等差數列的前n項和,則數列是一個等差數列,當數列是一個等差數列時,表示前n項和時,c=0,故前者可以推出后者,后者也可以推出前者,∴前者是后者的充要條件,故選C.33.擲一顆均勻的骰子,若隨機事件A表示“出現奇數點”,則A的對立事件B表示______.答案:擲一顆均勻的骰子,結果只有2種:出現奇數點、出現偶數點.若隨機事件A表示“出現奇數點”,則A的對立事件B表示:“出現偶數點”,故為出現偶數點.34.函數f(x)=2x2+1,&x∈[0,2],則函數f(x)的值域為()A.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴設y=2t,t=x2+1∈[1,5],∵y=2t是增函數,∴t=1時,ymin=2;t=5時,ymax=25=32.∴函數f(x)的值域為[2,32].故為:C.35.設向量a=(1,0),b=(sinθ,cosθ),0≤θ≤π,則|a+b|的最大值為
______.答案:|a|=1因為|b|=1,所以|a+b|2=a2+b2+2a?b=2+2sinθ因為0≤θ≤π,所以0≤sinθ≤1,所以2+2sinθ≤4,|a+b|≤2故為:236.袋中有4只紅球3只黑球,從袋中任取4只球,取到1只紅球得1分,取到1只黑球得3分,設得分為隨機變量ξ,則P(ξ≤6)=______.答案:取出的4只球中紅球個數可能為4,3,2,1個,黑球相應個數為0,1,2,3個.其分值為ξ=4,6,8.P(ξ≤6)=P(ξ=4)+P(ξ=6)=C44C03C47+C34C13C47=1335.故為:1335.37.沿著正四面體OABC的三條棱OA、OB、OC的方向有大小等于1、2、3的三個力f1、f2、f3.試求此三個力的合力f的大小以及此合力與三條棱所夾角的余弦.答案:用a、b、c分別代表棱OA、OB、OC上的三個單位向量,則f1=a,f2=2b,f3=3c,則f=f1+f2+f3=a+2b+3c,∴|f|2=(a+2b+3c)?(a+2b+3c)=|a|2+4|b|2+9|c|2+4a?b+6a?c+12b?c=1+4+9+4|a||b|cos<a,b>+6|a||c|cos<a,c>+12|b||c|cos<b,c>=14+4cos60°+6cos60°+12cos60°=14+2+3+6=25.∴|f|=5,即所求合力的大小為5,且cos<f,a>=f?a|f||a|=|a|2+2a?b+3a?c5=1+1+325=710.同理,可得cos<f,b>=45,cos<f,c>=910.38.若根據10名兒童的年齡
x(歲)和體重
y(㎏)數據用最小二乘法得到用年齡預報體重的回歸方程是
y=2x+7,已知這10名兒童的年齡分別是
2、3、3、5、2、6、7、3、4、5,則這10名兒童的平均體重是()
A.17㎏
B.16㎏
C.15㎏
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年房地產廣告設計服務協議模板
- 2024年度電梯安裝作業(yè)承攬協議
- 2024年汽車配件購銷協議模板
- 2024年軟件銷售綜合性協議樣本
- 再具體一些分別說一下考核試卷
- 漁業(yè)社會治理與決策科學考核試卷
- 橡膠制品行業(yè)對人口健康的貢獻考核試卷
- 森林種苗培育與植樹造林考核試卷
- 南京信息工程大學《遙感概論》2022-2023學年第一學期期末試卷
- 化學工程中的納米材料應用考核試卷
- GB/T 19533-2024汽車用壓縮天然氣鋼瓶定期檢驗與評定
- 婦產科護士晉升述職報告
- 骨髓腔內輸液(IOI)技術
- 建筑幕墻工程(鋁板、玻璃、石材)監(jiān)理實施細則(全面版)
- 小學數學與思政融合課教學設計
- 休閑生態(tài)農業(yè)觀光園建設項目財務分析及效益評價
- 江西省南昌市民德學校2023-2024學年八年級上學期期中數學試題
- 國際金融(英文版)智慧樹知到期末考試答案2024年
- 2024年《藥物臨床試驗質量管理規(guī)范》(GCP)網絡培訓題庫
- 2023年度學校食堂每月食品安全調度會議紀要
- 建筑門窗、幕墻安裝工人安全技術操作規(guī)程
評論
0/150
提交評論