2023年福州職業(yè)技術學院高職單招(數學)試題庫含答案解析_第1頁
2023年福州職業(yè)技術學院高職單招(數學)試題庫含答案解析_第2頁
2023年福州職業(yè)技術學院高職單招(數學)試題庫含答案解析_第3頁
2023年福州職業(yè)技術學院高職單招(數學)試題庫含答案解析_第4頁
2023年福州職業(yè)技術學院高職單招(數學)試題庫含答案解析_第5頁
已閱讀5頁,還剩41頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年福州職業(yè)技術學院高職單招(數學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.如圖,F是定直線l外的一個定點,C是l上的動點,有下列結論:若以C為圓心,CF為半徑的圓與l相交于A、B兩點,過A、B分別作l的垂線與圓C過F的切線相交于點P和點Q,則必在以F為焦點,l為準線的同一條拋物線上.

(Ⅰ)建立適當的坐標系,求出該拋物線的方程;

(Ⅱ)對以上結論的反向思考可以得到另一個命題:“若過拋物線焦點F的直線與拋物線相交于P、Q兩點,則以PQ為直徑的圓一定與拋物線的準線l相切”請問:此命題是正確?試證明你的判斷;

(Ⅲ)請選擇橢圓或雙曲線之一類比(Ⅱ)寫出相應的命題并證明其真假.(只選擇一種曲線解答即可,若兩種都選,則以第一選擇為平分依據)答案:(Ⅰ)過F作l的垂線交l于K,以KF的中點為原點,KF所在直線為x軸建立平面直角坐標系如圖1,并設|KF|=p,則可得該拋物線的方程為

y2=2px(p>0);(Ⅱ)該命題為真命題,證明如下:如圖2,設PQ中點為M,P、Q、M在拋物線準線l上的射影分別為A、B、D,∵PQ是拋物線過焦點F的弦,∴|PF|=|PA|,|QF|=|QB|,又|MD|是梯形APQB的中位線,∴|MD=12(|PA|+|QB|)=12(|PF|+|QF|)=|PQ|2.∵M是以PQ為直徑的圓的圓心,∴圓M與l相切.(Ⅲ)選擇橢圓類比(Ⅱ)所寫出的命題為:“過橢圓一焦點F的直線與橢圓交于P、Q兩點,則以PQ為直徑的圓與橢圓相應的準線l相離”.此命題為真命題,證明如下:證明:設PQ中點為M,橢圓的離心率為e,則0<e<1,P、Q、M在相應準線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e>|PQ|2,∴圓M與準線l相離.選擇雙曲線類比(Ⅱ)所寫出的命題為:“過雙曲線一焦點F的直線與雙曲線交于P、Q兩點,則以PQ為直徑的圓與雙曲線相應的準線l相交”.此命題為真命題,證明如下:證明:設PQ中點為M,橢圓的離心率為e,則e>1,P、Q、M在相應準線l上的射影分別為A、B、D,∵|PF|PA=e,∴|PA|=|PF|e,同理得|QB|=|QF|e.∵MD是梯形APQB的中位線,∴|MD|=|PA|+|QB|2=12(|PF|e+|QF|e)=|PQ|2e<|PQ|2,∴圓M與準線l相交.2.關于直線a,b,c以及平面M,N,給出下面命題:

①若a∥M,b∥M,則a∥b

②若a∥M,b⊥M,則b⊥a

③若a∥M,b⊥M,且c⊥a,c⊥b,則c⊥M

④若a⊥M,a∥N,則M⊥N,

其中正確命題的個數為()

A.0個

B.1個

C.2個

D.3個答案:C3.設F1,F2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數列,則|AB|的長為______.答案:∵|AF2|,|AB|,|BF2|成等差數列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:434.下面程序運行后,輸出的值是()

A.42

B.43

C.44

D.45

答案:C5.對變量x、y有觀測數據(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數據(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()

A.變量x與y正相關,u與v正相關

B.變量x與y正相關,u與v負相關

C.變量x與y負相關,u與v正相關

D.變量x與y負相關,u與v負相關答案:C6.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2

(1)求a?b;

(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?

(-3e1+2e2)=

-6e12+e1

?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727

×7=-12,又0<<a,b><π,所以<a,b>=2π3.7.用反證法證明“3是無理數”時,第一步應假設“______.”答案:反證法肯定題設而否定結論,從而得出矛盾,題設“3是無理數”,那么假設為:3是有理數.故為3是有理數.8.已知AB和CD是曲線(t為參數)的兩條相交于點P(2,2)的弦,若AB⊥CD,且|PA|·|PB|=|PC|·

|PD|,

(Ⅰ)將曲線(t為參數)化為普通方程,并說明它表示什么曲線;

(Ⅱ)試求直線AB的方程。答案:解:(Ⅰ)由y=4t得y2=16t2,而x=4t2,∴y2=4x,它表示拋物線;(Ⅱ)設直線AB和CD的傾斜角分別為α,β,則直線AB和CD的參數方程分別為,把①代入y2=4x中,得t2sin2α+(4sinα-4cosα)t-4=0,③依題意知sinα≠0且方程③的判別式Δ=16(sinα-cosα)2+16sin2α>0,∴方程③有兩個不相等的實數解t1,t2,則由t的幾何意義知|PA|=|t1|,|PB|=|t2|,∴|PA|·|PB|=|t1t2|=,同理|PC|·|PD|=,由|PA|·|PB|=|PC|·|PD|知,即sin2α=sin2β,∵0≤α,β<π,∴α=π-β,∵AB⊥CD,∴β=α+90°或α=β+90°,∴直線AB的傾斜角∴kAB=1或kAB=-1,故直線AB的方程為y=x或x+y-4=0。9.已知=1-ni,其中m,n是實數,i是虛數單位,則m+ni=(

A.1+2i

B.1-2i

C.2+i

D.2-i答案:C10.已知向量a=(1,1)與b=(2,3),用坐標表示2a+b為______.答案:根據題意,a=(1,1)與b=(2,3),則2a+b=2(1,1)+(2,3)=(4,5);故為(4,5).11.方程x2-(k+2)x+1-3k=0有兩個不等實根x1,x2,且0<x1<1<x2<2,則實數k的取值范圍為______.答案:構造函數f(x)=x2-(k+2)x+1-3k∵方程x2-(k+2)x+1-3k=0有兩個不等實根x1,x2,且0<x1<1<x2<2,∴f(0)>0f(1)<0f(2)>0∴1-3k>0-4k<01-5k>0∴0<k<15∴實數k的取值范圍為(0,15)故為:(0,15)12.在邊長為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+

b=c,∴|a+b+2c|=|3c|=32,故為32.13.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點,若從M點繞圓柱體的側面到達N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側面剪開輔平,得出圓柱的側面展開圖,從M點繞圓柱體的側面到達N點,實際上是從側面展開圖的長方形的一個頂點M到達不相鄰的另一個頂點N.而兩點間以線段的長度最短.所以最短路線就是側面展開圖中長方形的一條對角線.如圖所示.14.如圖,AB是⊙O的直徑,點D在AB的延長線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°15.下面程序框圖輸出的S表示什么?虛線框表示什么結構?答案:由框圖知,當r=5時,輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線框是一個順序結構.16.求由曲線圍成的圖形的面積.答案:面積為解析:當,時,方程化成,即.上式表示圓心在,半徑為的圓.所以,當,時,方程表示在第一象限的部分以及軸,軸負半軸上的點,.同理,當,時,方程表示在第四象限的部分以及軸負半軸上的點;當,時,方程表示圓在第二象限的部分以及軸負半軸上的點;當,時,方程表示圓在第三象限部分.以上合起來構成如圖所示的圖形,面積為.17.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.18.已知直線經過點A(0,4)和點B(1,2),則直線AB的斜率為______.答案:因為A(0,4)和點B(1,2),所以直線AB的斜率k=2-41-0=-2故為:-219.現有以下兩項調查:①某校高二年級共有15個班,現從中選擇2個班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數量之比為1:5:9.為了調查全市商店每日零售額情況,抽取其中15家進行調查.完成①、②這兩項調查宜采用的抽樣方法依次是()A.簡單隨機抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡單隨機抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個班中選擇2個班,檢查其清潔衛(wèi)生狀況;總體個數不多,而且差異不大,故可采用簡單隨機抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項調查宜采用的抽樣方法依次是簡單隨機抽樣法,分層抽樣法故選A20.將程序補充完整

INPUT

x

m=xMOD2

IF______THEN

PRINT“x是偶數”

ELSE

PRINT“x是奇數”

END

IF

END.答案:本程序的作用是判斷出輸入的數是奇數還是偶數,由其邏輯關系知,若邏輯是“是”則輸出“x是偶數”,若邏輯是“否”,則輸出“x是奇數”故判斷條件應為m=0故為m=021.如果一個圓錐的正視圖是邊長為2的等邊三角形,則該圓錐的表面積是______.答案:由已知,圓錐的底面直徑為2,母線為2,則這個圓錐的表面積是12×2π×2+π?12=3π.故:3π.22.函數y=2|x|的定義域為[a,b],值域為[1,16],當a變動時,函數b=g(a)的圖象可以是()A.

B.

C.

D.

答案:根據選項可知a≤0a變動時,函數y=2|x|的定義域為[a,b],值域為[1,16],∴2|b|=16,b=4故選B.23.用行列式討論關于x,y

的二元一次方程組mx+y=m+1x+my=2m解的情況并求解.答案:D=.m11m.=m2-1=(m+1)(m-1),Dx=.m+112mm.=m2-m=m(m-1),Dy=.mm+112m.=2m2-m-1=(2m+1)(m-1),…(各(1分)共3分)(1)當m≠-1,m≠1時,D≠0,方程組有唯一解,解為(4)x=mm+1(5)y=2m+1m+1(6)…((2分),其中解1分)(2)當m=-1時,D=0,Dx≠0,方程組無解;…(2分)(3)當m=1時,D=Dx=Dy=0,方程組有無窮多組解,此時方程組化為x+y=2x+y=2,令x=t(t∈R),原方程組的解為x=ty=2-t(t∈R).…((2分),沒寫出解扣1分)24.若拋物線y2=4x上一點P到其焦點的距離為3,則點P的橫坐標等于______.答案:∵拋物線y2=4x=2px,∴p=2,由拋物線定義可知,拋物線上任一點到焦點的距離與到準線的距離是相等的,∴|MF|=3=x+p2=3,∴x=2,故為:2.25.如圖,已知點P在正方體ABCD-A′B′C′D′的對角線BD′上,∠PDA=60°.

(Ⅰ)求DP與CC′所成角的大小;

(Ⅱ)求DP與平面AA′D′D所成角的大小.答案:方法一:如圖,以D為原點,DA為單位長建立空間直角坐標系D-xyz.則DA=(1,0,0),CC′=(0,0,1).連接BD,B'D'.在平面BB'D'D中,延長DP交B'D'于H.設DH=(m,m,1)(m>0),由已知<DH,DA>=60°,由DA?DH=|DA||DH|cos<DA,DH>可得2m=2m2+1.解得m=22,所以DH=(22,22,1).(4分)(Ⅰ)因為cos<DH,CC′>=22×0+22×0+1×11×2=22,所以<DH,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DH,DC>=22×0+22×1+1×01×2=12,所以<DH,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)方法二:如圖,以D為原點,DA為單位長建立空間直角坐標系D-xyz.則DA=(1,0,0),CC′=(0,0,1),BD′=(-1,-1,1).設P(x,y,z)則BP=λBD′,∴(x-1,y-1,z)=(-λ,-λ,λ)∴x=1-λy=1-λz=λ,則DP=(1-λ,1-λ,λ),由已知,<DP,DA>=60°,∴λ2-4λ+2=0,解得λ=2-2,∴DP=(2-1,2-1,2-2)(4分)(Ⅰ)因為cos<DP,CC′>=2-22(2-1)=22,所以<DP,CC′>=45°.即DP與CC'所成的角為45°.(8分)(Ⅱ)平面AA'D'D的一個法向量是DC=(0,1,0).因為cos<DP,DC>=2-12(2-1)=12,所以<DP,DC>=60°.可得DP與平面AA'D'D所成的角為30°.(12分)26.一個口袋內有5個白球和3個黑球,任意取出一個,如果是黑球,則這個黑球不放回且另外放入一個白球,這樣繼續(xù)下去,直到取出的球是白球為止.求取到白球所需的次數ξ的概率分布列及期望.答案:由題意知變量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256

P(ξ=1)=3256

∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=37925627.為了評價某個電視欄目的改革效果,在改革前后分別從居民點抽取了100位居民進行調查,經過計算K2≈0.99,根據這一數據分析,下列說法正確的是()

A.有99%的人認為該欄目優(yōu)秀

B.有99%的人認為該欄目是否優(yōu)秀與改革有關系

C.有99%的把握認為電視欄目是否優(yōu)秀與改革有關系

D.沒有理由認為電視欄目是否優(yōu)秀與改革有關系答案:D28.某工廠生產的產品,用速度恒定的傳送帶將產品送入包裝車間之前,質檢員每隔3分鐘從傳送帶上是特定位置取一件產品進行檢測,這種抽樣方法是()

A.簡單隨機抽樣

B.系統(tǒng)抽樣

C.分層抽樣

D.其它抽樣方法答案:B29.函數f(x)=8xx2+2(x>0)()A.當x=2時,取得最小值83B.當x=2時,取得最大值83C.當x=2時,取得最小值22D.當x=2時,取得最大值22答案:f(x)=8xx2+2=8x+2x≤822(x>0)=22當且僅當x=2x即x=2時,取得最大值22故選D.30.已知單位正方體ABCD-A1B1C1D1,E分別是棱C1D1的中點,試求:

(1)AE與平面BB1C1C所成的角的正弦值;

(2)二面角C1-DB-A的余弦值.答案:以D為坐標原點建立空間直角坐標系,如圖所示:(1)設正方體棱長為2.則E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量為n=(0,1,0).設AE與平面BCC1B1所成的角為θ.sinθ=|cos<AE,n>|=|AE?n||AE|

|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).設平面DBC1的法向量為n1=(x,y,z),則n1?DB=x+y=0n1?DC1=y+z=0,令y=-1,則x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量為n2=(0,0,1).設二面角C1-DB-A的大小為α,從圖中可知:α為鈍角.∵cos<n1,n2>=n1?n2|n1|

|n2|=13=33,∴cosα=-33.31.已知復數(m2-5m+6)+(m2-3m)i是純虛數,則實數m=______.答案:當m2-5m+6=0m2-3m≠0時,即m=2或m=3m≠0且m≠3?m=2時復數z為純虛數.故為:2.32.已知點P是長方體ABCD-A1B1C1D1底面ABCD內一動點,其中AA1=AB=1,AD=2,若A1P與A1C所成的角為30°,那么點P在底面的軌跡為()A.圓弧B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:如圖,∵A1P與A1C所成的角為30°,∴P點在以A1C為軸,母線與軸的夾角為30度的圓錐面上,在直角三角形A1CC1中,A1C1=3,CC1=1,∴∠C1AC1=30°當截面ABCD與圓錐的母線A1C1平行時,截得的圖形是拋物線,故點P在底面的軌跡為拋物線的一部分.故選D.33.已知點P是以F1、F2為左、右焦點的雙曲線(a>0,b>0)左支上一點,且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為()

A.

B.

C.

D.答案:D34.如圖為某公司的組織結構圖,則后勤部的直接領導是______.

答案:有已知中某公司的組織結構圖,可得專家辦公室直接領導:財務部,后勤部和編輯部三個部門,故后勤部的直接領導是專家辦公室.故為:專家辦公室.35.已知矩陣A將點(1,0)變換為(2,3),且屬于特征值3的一個特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.

7分(2)A=2130的特征多項式為f(λ)=.λ-2-1-3λ.=

-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時,α1=11,λ2=-1時,α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.36.執(zhí)行如圖所示的程序框圖,輸出的S值為()

A.2

B.4

C.8

D.16

答案:C37.設A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,如果A∩B=B,求實數a的取值范圍。答案:解A={0,-4}∵A∩B=B

∴BA由x2+2(a+1)x+a2-1=0

得△=4(a+1)2-4(a2-1)=8(a+1)(1)當a<-1時△<0

B=φA(2)當a=-1時△=0

B={0}A(3)當a>-1時△>0

要使BA,則A=B∵0,-4是方程x2+2(a+1)x+a2-1=0的兩根∴解之得a=1綜上可得a≤-1或a=138.f(x)=(1+2x)m+(1+3x)n(m,n∈N*)的展開式中x的系數為13,則x2的系數為()A.31B.40C.31或40D.71或80答案:(1+2x)m的展開式中x的系數為2Cm1=2m,(1+3x)n的展開式中x的系數為3Cn1=3n∴3n+2m=13∴n=1m=5或n=3m=2(1+2x)m的展開式中的x2系數為22Cm2,(1+3x)n的展開式中的x2系數為32Cn2∴當n=1m=5時,x2的系數為22Cm2+32Cn2=40當n=3m=2時,x2的系數為22Cm2+32Cn2=31故選C.39.已知拋物線和雙曲線都經過點M(1,2),它們在x軸上有共同焦點,拋物線的頂點為坐標原點,則雙曲線的標準方程是______.答案:設拋物線方程為y2=2px(p>0),將M(1,2)代入y2=2px,得P=2.∴拋物線方程為y2=4x,焦點為F(1,0)由題意知雙曲線的焦點為F1(-1,0),F2(1,0)∴c=1對于雙曲線,2a=||MF1|-|MF2||=22-2∴a=2-1,a2=3-22,b2=22-2∴雙曲線方程為x23-22-y222-2=1.故為:x23-22-y222-2=1.40.已知復數z0=1-mi(m>0),z=x+yi和w=x'+y'i,其中x,y,x',y'均為實數,i為虛數單位,且對于任意復數z,有w=.z0?.z,|w|=2|z|.

(Ⅰ)試求m的值,并分別寫出x'和y'用x、y表示的關系式;

(Ⅱ)將(x、y)作為點P的坐標,(x'、y')作為點Q的坐標,上述關系可以看作是坐標平面上點的一個變換:它將平面上的點P變到這一平面上的點Q,當點P在直線y=x+1上移動時,試求點P經該變換后得到的點Q的軌跡方程;

(Ⅲ)是否存在這樣的直線:它上面的任一點經上述變換后得到的點仍在該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.答案:(Ⅰ)由題設,|w|=|.z0?.z|=|z0||z|=2|z|,∴|z0|=2,于是由1+m2=4,且m>0,得m=3,…(3分)因此由x′+y′i=.(1-3i)?.(x+yi)=x+3y+(3x-y)i,得關系式x′=x+3yy′=3x-y…(5分)(Ⅱ)設點P(x,y)在直線y=x+1上,則其經變換后的點Q(x',y')滿足x′=(1+3)x+3y′=(3x-1)x-1,…(7分)消去x,得y′=(2-3)x′-23+2,故點Q的軌跡方程為y=(2-3)x-23+2…(10分)(3)假設存在這樣的直線,∵平行坐標軸的直線顯然不滿足條件,∴所求直線可設為y=kx+b(k≠0),…(12分)[解法一]∵該直線上的任一點P(x,y),其經變換后得到的點Q(x+3y,3x-y)仍在該直線上,∴3x-y=k(x+3y)+b,即-(3k+1)y=(k-3)x+b,當b≠0時,方程組-(3k+1)=1k-3=k無解,故這樣的直線不存在.

…(16分)當b=0時,由-(3k+1)1=k-3k,得3k2+2k-3=0,解得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)[解法二]取直線上一點P(-bk,0),其經變換后的點Q(-bk,-3bk)仍在該直線上,∴-3bk=k(-bk)+b,得b=0,…(14分)故所求直線為y=kx,取直線上一點P(0,k),其經變換后得到的點Q(1+3k,3-k)仍在該直線上.∴3-k=k(1+3k),…(16分)即3k2+2k-3=0,得k=33或k=-3,故這樣的直線存在,其方程為y=33x或y=-3x,…(18分)41.與向量a=(12,5)平行的單位向量為()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:設與向量a=(12,5)平行的單位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故選C.42.已知函數f(x),如果對任意一個三角形,只要它的三邊長a,b,c都在f(x)的定義域內,就有f(a),f(b),f(c)也是某個三角形的三邊長,則稱f(x)為“保三角形函數”.在函數①f1(x)=x,②f2(x)=x,③f3(x)=x2中,其中______是“保三角形函數”.(填上正確的函數序號)答案:f1(x),f2(x)是“保三角形函數”,f3(x)不是“保三角形函數”.任給三角形,設它的三邊長分別為a,b,c,則a+b>c,不妨假設a≤c,b≤c,由于a+b>a+b>c>0,所以f1(x),f2(x)是“保三角形函數”.對于f3(x),3,3,5可作為一個三角形的三邊長,但32+32<52,所以不存在三角形以32,32,52為三邊長,故f3(x)不是“保三角形函數”.故為:①②.43.因為樣本是總體的一部分,是由某些個體所組成的,盡管對總體具有一定的代表性,但并不等于總體,為什么不把所有個體考查一遍,使樣本就是總體?答案:如果樣本就是總體,抽樣調查就變成普查了,盡管這樣確實反映了實際情況,但不是統(tǒng)計的基本思想,其操作性、可行性、人力、物力等方面,都會有制約因素存在,何況有些調查是破壞性的,如考查一批玻璃的抗碎能力,燈泡的使用壽命等,普查就全破壞了.44.實數系的結構圖如圖所示,其中1、2、3三個方格中的內容分別為()

A.有理數、零、整數

B.有理數、整數、零

C.零、有理數、整數

D.整數、有理數、零

答案:B45.試比較nn+1與(n+1)n(n∈N*)的大小.

當n=1時,有nn+1______(n+1)n(填>、=或<);

當n=2時,有nn+1______(n+1)n(填>、=或<);

當n=3時,有nn+1______(n+1)n(填>、=或<);

當n=4時,有nn+1______(n+1)n(填>、=或<);

猜想一個一般性的結論,并加以證明.答案:當n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,根據上述結論,我們猜想:當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設當n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當n=k+1時也成立,∴當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.46.在樣本的頻率分布直方圖中,共有11個小長方形,若中間一個長方形的面積等于其他十個小長方形面積的和的14,且樣本容量是160,則中間一組的頻數為()A.32B.0.2C.40D.0.25答案:設間一個長方形的面積S則其他十個小長方形面積的和為4S,所以頻率分布直方圖的總面積為5S所以中間一組的頻率為S5S=0.2所以中間一組的頻數為160×0.2=32故選A47.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點D的坐標.答案:設D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).48.若函數f(x)=x+1的值域為(2,3],則函數f(x)的定義域為______.答案:∵f(x)=x+1的值域為(2,3],∴2<x+1≤3∴1<x≤2故為:(1,2]49.與直線3x+4y-3=0平行,并且距離為3的直線方程為______.答案:設所求直線上任意一點P(x,y),由題意可得點P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.50.若向量的起點與終點M、A、B、C互不重合且無三點共線,且滿足下列關系(O為空間任一點),則能使向量成為空間一組基底的關系是()

A.

B.

C.

D.答案:C第2卷一.綜合題(共50題)1.某班從6名班干部(其中男生4人,女生2人)中選3人參加學校學生會的干部競選.

(1)設所選3人中女生人數為ξ,求ξ的分布列及數學期望;

(2)在男生甲被選中的情況下,求女生乙也被選中的概率.答案:(1)ξ的所有可能取值為0,1,2.依題意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列為ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)設“男生甲被選中的情況下,女生乙也被選中”為事件C,“男生甲被選中”為事件A,“女生乙被選中”為事件B從4個男生、2個女生中選3人,男生甲被選中的種數為n(A)=C52=10,男生甲被選中,女生乙也被選中的種數為n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被選中的情況下,女生乙也被選中的概率為25.2.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當a≠0且a≠-1時,1a=a1≠-2a-2-a-1,解之得a=1當a=0時,兩條直線垂直;當a=-1時,兩條直線重合故為:13.某人從家乘車到單位,途中有3個交通崗亭.假設在各交通崗遇到紅燈的事件是相互獨立的,且概率都是0.4,則此人上班途中遇紅燈的次數的期望為()

A.0.4

B.1.2

C.0.43

D.0.6答案:B4.若施化肥量x與小麥產量y之間的回歸方程為y=250+4x(單位:kg),當施化肥量為50kg時,預計小麥產量為______kg.答案:根據回歸方程為y=250+4x,當施化肥量為50kg,即x=50kg時,y=250+4x=250+200=450kg故為:4505.若直線按向量平移得到直線,那么(

)A.只能是(-3,0)B.只能是(0,6)C.只能是(-3,0)或(0,6)D.有無數個答案:D解析:設平移向量,直線平移之后的解析式為,即,所以,滿足的有無數多個.6.△ABC中,,若,則m+n=()

A.

B.

C.

D.1答案:B7.已知直線l過點P(1,0,-1),平行于向量=(2,1,1),平面α過直線l與點M(1,2,3),則平面α的法向量不可能是()

A.(1,-4,2)

B.(,-1,)

C.(-,-1,-)

D.(0,-1,1)答案:D8.棱長為1的正方體ABCD-A1B1C1D1的8個頂點都在球O的表面上,E,F分別是棱AA1,DD1的中點,則直線EF被球O截得的線段長為()

A.

B.1

C.1+

D.答案:D9.拋物線頂點在坐標原點,以y軸為對稱軸,過焦點且與y軸垂直的弦長為16,則拋物線方程為______.答案:∵過焦點且與對稱軸y軸垂直的弦長等于p的2倍.∴所求拋物線方程為x2=±16y.故為:x2=±16y.10.某小組有3名女生、4名男生,從中選出3名代表,要求至少女生與男生各有一名,共有______種不同的選法.(要求用數字作答)答案:由題意知本題是一個分類計數問題,要求至少女生與男生各有一名有兩個種不同的結果,即一個女生兩個男生和一個男生兩個女生,∴共有C31C42+C32C41=30種結果,故為:3011.已知集合{2x,x+y}={7,4},則整數x=______,y=______.答案:∵{2x,x+y}={7,4},∴2x=4x+y=7或2x=7x+y=4解得x=2y=5或x=3.5y=0.5不是整數,舍去故為:2,512.過點A(-1,4)作圓C:(x-2)2+(y-3)2=1的切線l,求切線l的方程.答案:設方程為y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切線l的方程為y=4或3x+4y-13=013.在空間四邊形OABC中,OA+AB-CB等于()A.OAB.ABC.OCD.AC答案:根據向量的加法、減法法則,得OA+AB-CB=OB-CB=OB+BC=OC.故選C.14.用長為4、寬為2的矩形做側面圍成一個高為2的圓柱,此圓柱的軸截面面積為()A.8B.8πC.4πD.2π答案:∵用長為4、寬為2的矩形做側面圍成一個圓柱,且圓柱高為h=2∴底面圓周由長為4的線段圍成,可得底面圓直徑2r=4π∴此圓柱的軸截面矩形的面積為S=2r×h=8π故選:B15.已知點P(t,t),t∈R,點M是圓x2+(y-1)2=上的動點,點N是圓(x-2)2+y2=上的動點,則|PN|-|PM|的最大值是(

A.-1

B.

C.2

D.1答案:C16.右圖程序運行后輸出的結果為()

A.3456

B.4567

C.5678

D.6789

答案:A17.某學校為了解高一男生的百米成績,隨機抽取了50人進行調查,如圖是這50名學生百米成績的頻率分布直方圖.根據該圖可以估計出全校高一男生中百米成績在[13,14]內的人數大約是140人,則高一共有男生______人.

答案:第三和第四個小矩形面積之和為(0.72+0.68)×0.5=0.7,即百米成績在[13,14]內的頻率為:0.7,因為根據該圖可以估計出全校高一男生中百米成績在[13,14]內的人數大約是140人,則高一共有男生1400.7=200人.故為:200.18.對總數為N的一批零件抽取一個容量為30的樣本,若每個零件被抽取的概率為0.25,則N等于()A.150B.200C.120D.100答案:∵每個零件被抽取的概率都相等,∴30N=0.25,∴N=120.故選C.19.設直線l過點P(-3,3),且傾斜角為56π

(1)寫出直線l的參數方程;

(2)設此直線與曲線C:x=2cosθy=4sinθ(θ為參數)交A、B兩點,求|PA|?|PB|答案:(1)由于過點(a,b)傾斜角為α的直線的參數方程為

x=a+t?cosαy=b+t?sinα(t是參數),∵直線l經過點P(-3,3),傾斜角α=5π6,故直線的參數方程是x=-3-32ty=3+12t(t是參數).…(5分)(2)因為點A,B都在直線l上,所以可設它們對應的參數為t1和t1,則點A,B的坐標分別為A(-3-32t1,3+12t1),B(2-32t1,3+12t1).把直線L的參數方程代入橢圓的方程4x2+y2=16整理得到t2+(123+3)t+11613=0①,…(8分)因為t1和t2是方程①的解,從而t1t2=11613,由t的幾何意義可知|PA||PB|=|t1||t2|=11613.…(10分)即|PA|?|PB|=11613.20.若k∈R,則“k>3”是“方程表示雙曲線”的()

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件答案:A21.在研究打酣與患心臟病之間的關系中,通過收集數據、整理分析數據得“打酣與患心臟病有關”的結論,并且有99%以上的把握認為這個結論是成立的.下列說法中正確的是()

A.100個心臟病患者中至少有99人打酣

B.1個人患心臟病,則這個人有99%的概率打酣

C.100個心臟病患者中一定有打酣的人

D.100個心臟病患者中可能一個打酣的人都沒有答案:D22.梯形ABCD中,AB∥CD,AB=2CD,E、F分別是AD,BC的中點,M、N在EF上,且EM=MN=NF,若AB=a,BC=b,則AM=______(用a,b表示).答案:連結CN并延長交AB于G,因為AB∥CD,AB=2CD,M、N在EF上,且EM=MN=NF,所以G為AB的中點,所以AC=12a+b,又E、F分別是AD,BC的中點,M、N在EF上,且EM=MN=NF,所以M為AC的中點,所以AM=12AC,所以AM=14a+12b.故為:14a+12b.23.口袋內有100個大小相同的紅球、白球和黑球,其中有45個紅球,從中摸出1個球,摸出白球的概率為0.23,則摸出黑球的概率為______.答案:∵口袋內有100個大小相同的紅球、白球和黑球從中摸出1個球,摸出白球的概率為0.23,∴口袋內白球數為32個,又∵有45個紅球,∴為32個.從中摸出1個球,摸出黑球的概率為32100=0.32故為0.3224.如圖,△ABC中,D,E,F分別是邊BC,AB,CA的中點,在以A、B、C、D、E、F為端點的有向線段中所表示的向量中,

(1)與向量FE共線的有

______.

(2)與向量DF的模相等的有

______.

(3)與向量ED相等的有

______.答案:(1)∵EF是△ABC的中位線,∴EF∥BC且EF=12BC,則與向量FE共線的向量是BC、BD、DC、CB、DB、CD;(2))∵DF是△ABC的中位線,∴DF∥AC且DF=12AC,則與向量DF的模相等的有CE,EA,EC,AF;(3)∵DE是△ABC的中位線,∴DE∥AB且DE=12AB,則與向量ED相等的有AF,FB.25.由棱長為a的正方體的每個面向外側作側棱為a的正四棱錐,以這些棱錐的頂點為頂點的凸多面體的全面積是______.答案:由棱長為a的正方體的每個面向外側作側棱為a的正四棱錐,共可作6個,得到6個頂點,圍成一個正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對的兩頂點的距離應為2h′+a=1+2a正八面體的棱長x滿足2x=(1+2)a,x=(1+22)a,每個側面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a226.拋物線y2=4px(p>0)的準線與x軸交于M點,過點M作直線l交拋物線于A、B兩點.

(1)若線段AB的垂直平分線交x軸于N(x0,0),求證:x0>3p;

(2)若直線l的斜率依次為p,p2,p3,…,線段AB的垂直平分線與x軸的交點依次為N1,N2,N3,…,當0<p<1時,求1|N1N2|+1|N2N3|+…+1|N10N11|的值.答案:(1)證明:設直線l方程為y=k(x+p),代入y2=4px.得k2x2+(2k2p-4p)x+k2p2=0.△=4(k2p-2p)2-4k2?k2p2>0,得0<k2<1.令A(x1,y1)、B(x2,y2),則x1+x2=-2k2p-4pk2,y1+y2=k(x1+x2+2p)=4pk,AB中點坐標為(2P-k2Pk2,2pk).AB垂直平分線為y-2pk=-1k(x-2P-k2Pk2).令y=0,得x0=k2P+2Pk2=p+2Pk2.由上可知0<k2<1,∴x0>p+2p=3p.∴x0>3p.(2)∵l的斜率依次為p,p2,p3,時,AB中垂線與x軸交點依次為N1,N2,N3,(0<p<1).∴點Nn的坐標為(p+2p2n-1,0).|NnNn+1|=|(p+2p2n-1)-(p+2p2n+1)|=2(1-p2)p2n+1,1|NnNn+1|=p2n+12(1-p2),所求的值為12(1-p2)[p3+p4++p21]=p3(1-p19)2(1-p)2(1+p).27.如圖所示,正四面體V—ABC的高VD的中點為O,VC的中點為M.

(1)求證:AO、BO、CO兩兩垂直;

(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)

設=a,=b,=c,正四面體的棱長為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)

=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.28.根據下面的要求,求滿足1+2+3+…+n>500的最小的自然數n.

(1)畫出執(zhí)行該問題的程序框圖;

(2)以下是解決該問題的一個程序,但有2處錯誤,請找出錯誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結構是直到滿足條件退出循環(huán),While錯誤,應改成LOOP

UNTIL;②根據循環(huán)次數可知輸出n+1

應改為輸出n;29.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點,則實數m的取值范圍是(

A.(-∞,1)

B.(121,+∞)

C.[1,121]

D.(1,121)答案:C30.數據:1,1,3,3的眾數和中位數分別是()

A.1或3,2

B.3,2

C.1或3,1或3

D.3,3答案:A31.用數學歸納法證明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)時,第一步驗證n=1時,左邊應取的項是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,當n=1時,n+3=4,而等式左邊起始為1的連續(xù)的正整數的和,故n=1時,等式左邊的項為:1+2+3+4故為:1+2+3+432.求證1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2).答案:證明:①當n=1時,左邊=2,右邊=13×1×2×3=2,等式成立;②假設當n=k時,等式成立,即1×2+2×3+3×4+…+k(k+1)=13k(k+1)(k+2)則當n=k+1時,左邊=13k(k+1)(k+2)+(k+1)(k+2)=(k+1)(k+2)(13k+1)=13(k+1)(k+2)(k+3)即n=k+1時,等式也成立.所以1×2+2×3+3×4+…+n(n+1)=13n(n+1)(n+2)對任意正整數都成立.33.過點P(-3,0)且傾斜角為30°的直線和曲線x=t+1ty=t-1t(t為參數)相交于A,B兩點.求線段AB的長.答案:直線的參數方程為

x

=

-3

+

32sy

=

12s

(s

為參數),曲線x=t+1ty=t-1t

可以化為

x2-y2=4.將直線的參數方程代入上式,得

s2-63s+

10

=

0.設A、B對應的參數分別為s1,s2,∴s1+

s2=

6

3,s1?s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.34.從2008名學生中選取50名學生參加數學競賽,若采用下面的方法選?。合扔煤唵坞S機抽樣從2008人中剔除8人,剩下的2000人再按系統(tǒng)抽樣的方法抽取50人,則在2008人中,每人入選的概率()

A.不全相等

B.均不相等

C.都相等,且為

D.都相等,且為答案:C35.已知向量a=(1,2),b=(2,-3).若向量c滿足(c+a)∥b,c⊥(a+b),則c=______.答案:設c=(x,y),則c+a=(x+1,y+2),又(c+a)∥b,∴2(y+2)+3(x+1)=0.

①又c⊥(a+b),∴(x,y)?(3,-1)=3x-y=0.

②解①②得x=-79,y=-73.故應填:(-79,-73).36.某房間有四個門,甲要各進、出這個房間一次,不同的走法有多少種?()

A.12

B.7

C.16

D.64答案:C37.雙曲線的實軸長和焦距分別為()

A.

B.

C.

D.答案:C38.如圖,已知AP是⊙O的切線,P為切點,AC是⊙O的割線,與⊙O交于B,C兩點,圓心O在∠PAC的內部,點M是BC的中點.

(Ⅰ)證明A,P,O,M四點共圓;

(Ⅱ)求∠OAM+∠APM的大?。鸢福鹤C明:(Ⅰ)連接OP,OM.因為AP與⊙O相切于點P,所以OP⊥AP.因為M是⊙O的弦BC的中點,所以OM⊥BC.于是∠OPA+∠OMA=180°.由圓心O在∠PAC的內部,可知四邊形M的對角互補,所以A,P,O,M四點共圓.(Ⅱ)由(Ⅰ)得A,P,O,M四點共圓,所以∠OAM=∠OPM.由(Ⅰ)得OP⊥AP.由圓心O在∠PAC的內部,可知∠OPM+∠APM=90°.又∵A,P,O,M四點共圓∴∠OPM=∠OAM所以∠OAM+∠APM=90°.39.P是△ABC所在平面上的一點,且滿足,若△ABC的面積為1,則△PAB的面積為()

A.

B.

C.

D.答案:B40.圓錐曲線G的一個焦點是F,與之對應的準線是,過F作直線與G交于A、B兩點,以AB為直徑作圓M,圓M與的位置關系決定G

是何種曲線之間的關系是:______

圓M與的位置相離相切相交G

是何種曲線答案:設圓錐曲線過焦點F的弦為AB,過A、B分別向相應的準線作垂線AA',BB',則由第二定義得:|AF|=e|AA'|,|BF|=e|BB'|,∴|AF|+|BF|2=|AA′|+|BB′|2

?

e.設以AB為直徑的圓半徑為r,圓心到準線的距離為d,即有r=de,橢圓的離心率

0<e<1,此時r<d,圓M與準線相離;拋物線的離心率

e=1,此時r=d,圓M與準線相切;雙曲線的離心率

e>1,此時r>d,圓M與準線相交.故為:橢圓、拋物線、雙曲線.41.已知0<a<1,loga(1-x)<logax則()

A.0<x<1

B.x<

C.0<x<

D.<x<1答案:C42.隋機變量X~B(6,),則P(X=3)=()

A.

B.

C.

D.答案:C43.(理)下列以t為參數的參數方程中表示焦點在y軸上的橢圓的是()

A.

B.(a>b>0)

C.

D.

答案:C44.已知△ABC,A(-1,0),B(3,0),C(2,1),對它先作關于x軸的反射變換,再將所得圖形繞原點逆時針旋轉90°.

(1)分別求兩次變換所對應的矩陣M1,M2;

(2)求△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′的面積.答案:(1)關于x軸的反射變換M1=100-1,繞原點逆時針旋轉90°的變換M2=0-110.(4分)(2)∵M2?M1=0-110100-1=0110,(6分)△ABC在兩次連續(xù)的變換作用下所得到△A′B′C′,∴A(-1,0),B(3,0),C(2,1)變換成:A′(0,-1),B′(0,3),C′(1,2),(9分)∴△A'B'C'的面積=12×4×1=2.(10分)45.如圖,O是正方形ABCD對角線的交點,四邊形OAED,OCFB都是正方形,在圖中所示的向量中:

(1)與AO相等的向量有

______;

(2)寫出與AO共線的向量有

______;

(3)寫出與AO的模相等的向量有

______;

(4)向量AO與CO是否相等?答

______.答案:(1)與AO相等的向量有BF(2)與AO共線的向量有DE,CO,BF(3)與AO的模相等的向量有DE,

DO,AE,CO,CF,BF,BO(4)模相等,方向相反故AO與CO不相等46.已知a=3i+2j-k,b=i-j+2k,則5a與3b的數量積等于______.答案:a=3i+2j-k=(3,2,-1),5a=(15,10,-5)b=i-j+2k=(1,-1,2),3b=(3,-3,6)5a?3b=15×3+10×(-3)+(-5)×6=-15故為:-1547.賦值語句n=n+1的意思是()

A.n等于n+1

B.n+1等于n

C.將n的值賦給n+1

D.將n的值增加1,再賦給n,即n的值增加1答案:D48.a=0是復數a+bi(a,b∈R)為純虛數的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件答案:當a=0時,復數a+bi=bi,當b=0是不是純虛數即“a=0”成立推不出“復數a+bi(a,b∈R)為純虛數”反之,當復數a+bi(a,b∈R)為純虛數,則有a=0且b≠0即“復數a+bi(a,b∈R)為純虛數”成立能推出“a=0“成立故a=0是復數a+bi(a,b∈R)為純虛數的必要不充分條件故選B49.過A(-2,3),B(2,1)兩點的直線的斜率是()

A.

B.

C.-2

D.2答案:B50.球的表面積與它的內接正方體的表面積之比是()A.π3B.π4C.π2D.π答案:設:正方體邊長設為:a則:球的半徑為3a2所以球的表面積S1=4?π?R2=4π34a2=3πa2而正方體表面積為:S2=6a2所以比值為:S1S2=π2故選C第3卷一.綜合題(共50題)1.已知點A(-3,8),B(2,4),若y軸上的點P滿足PA的斜率是PB斜率的2倍,則P點的坐標為______.答案:設P(0,y),則∵點P滿足PA的斜率是PB斜率的2倍,∴y-80+3=2?y-40-2∴y=5∴P(0,5)故為:(0,5)2.在極坐標系下,圓C:ρ2+4ρsinθ+3=0的圓心坐標為()

A.(2,0)

B.

C.(2,π)

D.答案:D3.設函數f(x)的定義域為R,如果對任意的實數x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,那么f(3)=______.答案:對任意的實數x,y都有f(x+y)=f(x)+f(y)成立,且f(2)=1,∴f(2)=2f(1)=1∴f(1)=12那么f(3)=f(2)+f(1)=1=12=32故為:324.若平面向量a與b的夾角為120°,a=(2,0),|b|=1,則|a+2b|=______.答案:∵|a+2b|=(a+2b)2=a

2+4a?b+4

b2=|a|2+4|a||b|cos<a,b>+4|b|2=22+4×2×1cos120°+4×1=2.故為:25.設拋物線C:y2=3px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為()

A.y2=4x或y2=8x

B.y2=2x或y2=8x

C.y2=4x或y2=16x

D.y2=2x或y2=16x答案:C6.關于x的方程(m+3)x2-4mx+2m-1=0的兩根異號,且負數根的絕對值比正數根大,那么實數m的取值范圍是()

A.-3<m<0

B.0<m<3

C.m<-3或m>0

D.m<0或m>3答案:A7.對某種花卉的開放花期追蹤調查,調查情況如表:

花期(天)11~1314~1617~1920~22個數20403010則這種卉的平均花期為______天.答案:由表格知,花期平均為12天的有20個,花期平均為15天的有40個,花期平均為18天的有30個,花期平均為21天的有10個,∴這種花卉的評價花期是12×20+15×40+18×30+21×10100=16,故為:168.設ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,則a1x1,a2x2,…,anxn的值中,現給出以下結論,其中你認為正確的是______.

①都大于1②都小于1③至少有一個不大于1④至多有一個不小于1⑤至少有一個不小于1.答案:由題意ai∈R+,xi∈R+,i=1,2,…n,且a12+a22+…an2=1,x12+x22+…xn2=1,對于a1x1,a2x2,…,anxn的值中,若①成立,則分母都小于分子,由于分母的平方和為1,故可得a12+a22+…an2大于1,這與已知矛盾,故①不對;若②成立,則分母都大于分子,由于分母的平方和為1,故可得a12+a22+…an2小于1,這與已知矛盾,故②不對;由于③與①兩結論互否,故③對④不可能成立,a1x1,a2x2,…,anxn的值中有多于一個的比值大于1是可以的,故不對⑤與②兩結論互否,故正確綜上③⑤兩結論正確故為③⑤9.已知點A(1,2),直線l1:x=1+3ty=2-4t(t為參數)與直線l2:2x-4y=5相交于點B,則A、B兩點之間的距離|AB|=______.答案:將x=1+3t,y=2-4t代入2x-4y=5,得t=12,所以兩直線的交點坐標為(52,0)所以|AB|=(1-52)2+(2-0)2

=52.故為:5210.已知直線的參數方程為x=1+ty=3+2t.(t為參數),圓的極坐標方程為ρ=2cosθ+4sinθ.

(I)求直線的普通方程和圓的直角坐標方程;

(II)求直線被圓截得的弦長.答案:(I)直線的普通方程為:2x-y+1=0;圓的直角坐標方程為:(x-1)2+(y-2)2=5(4分)(II)圓心到直線的距離d=55,直線被圓截得的弦長L=2r2-d2=4305(10分)11.若log

23(x-2)≥0,則x的范圍是______.答案:由log

23(x-2)≥0=log231,可得0<x-2≤1,解得2<x≤3,故為(2,3].12.不等式x+x3≥0的解集是(

)。答案:{x|x≥0}13.已知在△ABC和點M滿足

MA+MB+MC=0,若存在實數m使得AB+AC=mAM成立,則m=______.答案:由點M滿足MA+MB+MC=0,知點M為△ABC的重心,設點D為底邊BC的中點,則AM=23AD=23×

12×(AB+AC)=13(AB+AC)∴AB+AC=3AM∴m=3故為:314.如圖,在△OAB中,P為線段AB上的一點,,且,則()

A.

B.

C.

D.

答案:A15.求證:定義在實數集上的單調減函數y=f(x)的圖象與x軸至多只有一個公共點.答案:證明:假設函數y=f(x)的圖象與x軸有兩個交點…(2分)設交點的橫坐標分別為x1,x2,且x1<x2.因為函數y=f(x)在實數集上單調遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設不成立.

…(12分)故原命題成立.…(14分)16.在直角坐標系xOy中,直線l的參數方程為x=3-22ty=5+22t(t為參數).在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.

(I)求圓C的參數方程;

(II)設圓C與直線l交于點A,B,求弦長|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圓C的直角坐標方程為x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圓C的參數方程為x=5cosθy=5+5sinθ(θ為參數)

…(4分)(Ⅱ)將直線l的參數方程代入圓C的直角坐標方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)設兩交點A,B所對應的參數分別為t1,t2,則t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)17.管理人員從一池塘中撈出30條魚做上標記,然后放回池塘,將帶標記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現其中帶標記的魚有2條.根據以上收據可以估計該池塘有______條魚.答案:設該池塘中有x條魚,由題設條件建立方程:30x=250,解得x=750.故為:750.18.由直角△ABC勾上一點D作弦AB的垂線交弦于E,交股的延長線于F,交外接圓于G,求證:EG為EA和EB的比例中項,又為ED和EF的比例中項.

答案:證明:連接GA、GB,則△AGB也是一個直角三角形,因為EG為直角△AGB的斜邊AB上的高,所以,EG為EA和EB的比例中項,即EG2=EA?EB∵∠AFE=∠ABC,∴直角△AEF∽直角△DEB,EAEF=EDEB即EA?EB=ED?EF.又∵EG2=EA?EB,∴EG2=ED?EF(等量代換),故EG也是ED和EF的比例中項.19.設a>0,f(x)=ax2+bx+c,曲線y=f(x)在點P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對稱軸距離的取值范圍為()

A.[0,]

B.[0,]

C.[0,||]

D.[0,||]答案:B20.在吸煙與患肺病這兩個分類變量的計算中,“若x2的觀測值為6.635,我們有99%的把握認為吸煙與患肺病有關系”這句話的意思是指()

A.在100個吸煙的人中,必有99個人患肺病

B.有1%的可能性認為推理出現錯誤

C.若某人吸煙,則他有99%的可能性患有肺病

D.若某人患肺病,則99%是因為吸煙答案:B21.已知,向量與向量的夾角是,則x的值為()

A.±3

B.±

C.±9

D.3答案:D22.函數y=f(x)對任意實數x,y都有f(x+y)=f(x)+f(y)+2xy.

(1)求f(0)的值;

(2)若f(1)=1,求f(2),f(3),f(4)的值,猜想f(n)的表達式并用數學歸納法證明你的結論;

(3)若f(1)≥1,求證:f(12n)>0(n∈N*).答案:(1)令x=y=0得f(0+0)=f(0)+f(0)+2×0×0?f(0)=0(2)f(1)=1,f(2)=f(1+1)=1+1+2=4f(3)=f(2+1)=4+1+2×2×1=9f(4)=f(3+1)=9+1+2×3×1=16猜想f(n)=n2,下用數學歸納法證明之.①當n=1時猜想成立.②假設n=k時猜想成立,即:f(k)=k2,那么f(k+1)=f(k)+f(1)+2k=k2+2k+1=(k+1)2.這就是說n=k+1時猜想也成立.對于一切n≥1,n∈N+猜想都成立.(3)f(1)≥1,則f(1)=2f(12)+2×12×12≥1?f(12)≥14>0假設n=k(k∈N*)時命題成立,即f(12k)≥122k>0,則f(12k)=2f(12k+1)+2×12k+1×12k+1≥122k?f(12k+1)≥122(k+1),由上知,則f(12n)>0(n∈N*).23.三直線ax+2y+8=0,4x+3y=10,2x-y=10相交于一點,則a的值是(

A.-2

B.-1

C.0

D.1答案:B24.在平行四邊形ABCD中,對角線AC與BD交于點O,AB+AD=λAO,則λ=______.答案:∵四邊形ABCD為平行四邊形,對角線AC與BD交于點O,∴AB+AD=AC,又O為AC的中點,∴AC=2AO,∴AB+AD=2AO,∵AB+AD=λAO,∴λ=2.故為:2.25.已知一個幾何體是由上下兩部分構成的一個組合體,其三視圖如圖所示,則這個組合體的上下兩部分分別是(

)答案:A26.已知:|.a|=1,|.b|=2,<a,b>=60°,則|a+b|=______.答案:由題意|a+b|2=(a+b)2=a2+2b?a+b2=1+4+2×2×1×cos<a,b>=5+2=7∴|a+b|=7故為727.在空間直角坐標系中,在Ox軸上的點P1的坐標特點為

______,在Oy軸上的點P2的坐標特點為

______,在Oz軸上的點P3的坐標特點為

______,在xOy平面上的點P4的坐標特點為

______,在yOz平面上的點P5的坐標特點為

______,在xOz平面上的點P6的坐標特點為

______.答案:由空間坐標系的定義知;Ox軸上的點P1的坐標特點為(x,0,0),在Oy軸上的點P2的坐標特點為(0,y,0),在Oz軸上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論