版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣123.已知集合A,則集合()A. B. C. D.4.要排出高三某班一天中,語文、數(shù)學(xué)、英語各節(jié),自習(xí)課節(jié)的功課表,其中上午節(jié),下午節(jié),若要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰(注意:上午第五節(jié)和下午第一節(jié)不算相鄰),則不同的排法種數(shù)是()A. B. C. D.5.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.6.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.7.我國宋代數(shù)學(xué)家秦九韶(1202-1261)在《數(shù)書九章》(1247)一書中提出“三斜求積術(shù)”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實;一為從隅,開平方得積.其實質(zhì)是根據(jù)三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或8.設(shè)集合,,若集合中有且僅有2個元素,則實數(shù)的取值范圍為A. B.C. D.9.若集合,,則=()A. B. C. D.10.已知棱錐的三視圖如圖所示,其中俯視圖是等腰直角三角形,則該三棱錐的四個面中,最大面積為()A. B. C. D.11.一艘海輪從A處出發(fā),以每小時24海里的速度沿南偏東40°的方向直線航行,30分鐘后到達(dá)B處,在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B,C兩點間的距離是()A.6海里 B.6海里 C.8海里 D.8海里12.設(shè)函數(shù)在定義城內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)的圖象可能為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在△ABC中,∠BAC=,AD為∠BAC的角平分線,且,若AB=2,則BC=_______.14.在的展開式中,的系數(shù)為______用數(shù)字作答15.已知函數(shù),則函數(shù)的極大值為___________.16.函數(shù)在區(qū)間上的值域為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,已知曲線,曲線(為參數(shù)),求曲線交點的直角坐標(biāo).18.(12分)已知數(shù)列的前項和和通項滿足.(1)求數(shù)列的通項公式;(2)已知數(shù)列中,,,求數(shù)列的前項和.19.(12分)某企業(yè)生產(chǎn)一種產(chǎn)品,從流水線上隨機(jī)抽取件產(chǎn)品,統(tǒng)計其質(zhì)量指標(biāo)值并繪制頻率分布直方圖(如圖1):規(guī)定產(chǎn)品的質(zhì)量指標(biāo)值在的為劣質(zhì)品,在的為優(yōu)等品,在的為特優(yōu)品,銷售時劣質(zhì)品每件虧損元,優(yōu)等品每件盈利元,特優(yōu)品每件盈利元,以這件產(chǎn)品的質(zhì)量指標(biāo)值位于各區(qū)間的頻率代替產(chǎn)品的質(zhì)量指標(biāo)值位于該區(qū)間的概率.(1)求每件產(chǎn)品的平均銷售利潤;(2)該企業(yè)主管部門為了解企業(yè)年營銷費用(單位:萬元)對年銷售量(單位:萬件)的影響,對該企業(yè)近年的年營銷費用和年銷售量,數(shù)據(jù)做了初步處理,得到的散點圖(如圖2)及一些統(tǒng)計量的值.表中,,,.根據(jù)散點圖判斷,可以作為年銷售量(萬件)關(guān)于年營銷費用(萬元)的回歸方程.①求關(guān)于的回歸方程;②用所求的回歸方程估計該企業(yè)每年應(yīng)投入多少營銷費,才能使得該企業(yè)的年收益的預(yù)報值達(dá)到最大?(收益銷售利潤營銷費用,取)附:對于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計分別為,.20.(12分)已知函數(shù).(1)當(dāng)(為自然對數(shù)的底數(shù))時,求函數(shù)的極值;(2)為的導(dǎo)函數(shù),當(dāng),時,求證:.21.(12分)如圖,已知橢圓經(jīng)過點,且離心率,過右焦點且不與坐標(biāo)軸垂直的直線與橢圓相交于兩點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)橢圓的右頂點為,線段的中點為,記直線的斜率分別為,求證:為定值.22.(10分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
求出復(fù)數(shù),得出其對應(yīng)點的坐標(biāo),確定所在象限.【詳解】由題意,對應(yīng)點坐標(biāo)為,在第二象限.故選:B.【點睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.2.D【解析】
分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,,然后計算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因為直線經(jīng)過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數(shù),屬基礎(chǔ)題。3.A【解析】
化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎(chǔ)題.4.C【解析】
根據(jù)題意,分兩種情況進(jìn)行討論:①語文和數(shù)學(xué)都安排在上午;②語文和數(shù)學(xué)一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數(shù)目,由分類加法計數(shù)原理可得答案.【詳解】根據(jù)題意,分兩種情況進(jìn)行討論:①語文和數(shù)學(xué)都安排在上午,要求節(jié)語文課必須相鄰且節(jié)數(shù)學(xué)課也必須相鄰,將節(jié)語文課和節(jié)數(shù)學(xué)課分別捆綁,然后在剩余節(jié)課中選節(jié)到上午,由于節(jié)英語課不加以區(qū)分,此時,排法種數(shù)為種;②語文和數(shù)學(xué)都一個安排在上午,一個安排在下午.語文和數(shù)學(xué)一個安排在上午,一個安排在下午,但節(jié)語文課不加以區(qū)分,節(jié)數(shù)學(xué)課不加以區(qū)分,節(jié)英語課也不加以區(qū)分,此時,排法種數(shù)為種.綜上所述,共有種不同的排法.故選:C.【點睛】本題考查排列、組合的應(yīng)用,涉及分類計數(shù)原理的應(yīng)用,屬于中等題.5.D【解析】
由得,分別以為橫縱坐標(biāo)建立如圖所示平面直角坐標(biāo)系,由圖可知,.6.B【解析】
建立平面直角坐標(biāo)系,用坐標(biāo)表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,則D(0,0).不妨設(shè)AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結(jié)果求參數(shù),屬于中檔題.7.C【解析】
將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關(guān)系求解.【詳解】已知,,,代入,得,即,解得,當(dāng)時,由余弦弦定理得:,.當(dāng)時,由余弦弦定理得:,.故選:C【點睛】本題主要考查余弦定理和平方關(guān)系,還考查了對數(shù)學(xué)史的理解能力,屬于基礎(chǔ)題.8.B【解析】
由題意知且,結(jié)合數(shù)軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點睛】本題主要考查了集合的關(guān)系及運算,以及借助數(shù)軸解決有關(guān)問題,其中確定中的元素是解題的關(guān)鍵,屬于基礎(chǔ)題.9.C【解析】試題分析:化簡集合故選C.考點:集合的運算.10.B【解析】
由三視圖可知,該三棱錐如圖,其中底面是等腰直角三角形,平面,結(jié)合三視圖求出每個面的面積即可.【詳解】由三視圖可知,該三棱錐如圖所示:其中底面是等腰直角三角形,平面,由三視圖知,因為,,所以,所以,因為為等邊三角形,所以,所以該三棱錐的四個面中,最大面積為.故選:B【點睛】本題考查三視圖還原幾何體并求其面積;考查空間想象能力和運算求解能力;三視圖正確還原幾何體是求解本題的關(guān)鍵;屬于中檔題、??碱}型.11.A【解析】
先根據(jù)給的條件求出三角形ABC的三個內(nèi)角,再結(jié)合AB可求,應(yīng)用正弦定理即可求解.【詳解】由題意可知:∠BAC=70°﹣40°=30°.∠ACD=110°,∴∠ACB=110°﹣65°=45°,∴∠ABC=180°﹣30°﹣45°=105°.又AB=24×0.5=12.在△ABC中,由正弦定理得,即,∴.故選:A.【點睛】本題考查正弦定理的實際應(yīng)用,關(guān)鍵是將給的角度、線段長度轉(zhuǎn)化為三角形的邊角關(guān)系,利用正余弦定理求解.屬于中檔題.12.D【解析】
根據(jù)的圖象可得的單調(diào)性,從而得到在相應(yīng)范圍上的符號和極值點,據(jù)此可判斷的圖象.【詳解】由的圖象可知,在上為增函數(shù),且在上存在正數(shù),使得在上為增函數(shù),在為減函數(shù),故在有兩個不同的零點,且在這兩個零點的附近,有變化,故排除A,B.由在上為增函數(shù)可得在上恒成立,故排除C.故選:D.【點睛】本題考查導(dǎo)函數(shù)圖象的識別,此類問題應(yīng)根據(jù)原函數(shù)的單調(diào)性來考慮導(dǎo)函數(shù)的符號與零點情況,本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由,求出長度關(guān)系,利用角平分線以及面積關(guān)系,求出邊,再由余弦定理,即可求解.【詳解】,,,,.故答案為:.【點睛】本題考查共線向量的應(yīng)用、面積公式、余弦定理解三角形,考查計算求解能力,屬于中檔題.14.1【解析】
利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù).【詳解】二項展開式的通項為令得的系數(shù)為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.15.【解析】
對函數(shù)求導(dǎo),通過賦值,求得,再對函數(shù)單調(diào)性進(jìn)行分析,求得極大值.【詳解】,故解得,,令,解得函數(shù)在單調(diào)遞增,在單調(diào)遞減,故的極大值為故答案為:.【點睛】本題考查函數(shù)極值的求解,難點是要通過賦值,求出未知量.16.【解析】
由二倍角公式降冪,再由兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,結(jié)合正弦函數(shù)性質(zhì)可求得值域.【詳解】,,則,.故答案為:.【點睛】本題考查三角恒等變換(二倍角公式、兩角和的正弦公式),考查正弦函數(shù)的的單調(diào)性和最值.求解三角函數(shù)的性質(zhì)的性質(zhì)一般都需要用三角恒等變換化函數(shù)為一個角的一個三角函數(shù)形式,然后結(jié)合正弦函數(shù)的性質(zhì)得出結(jié)論.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.【解析】
利用極坐標(biāo)方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因為,所以,所以曲線的直角坐標(biāo)方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標(biāo)為.【點睛】本題考查極坐標(biāo)方程與普通方程,參數(shù)方程與普通方程間的互化,考查學(xué)生的計算能力,是一道容易題.18.(1);(2)【解析】
(1)當(dāng)時,利用可得,故可利用等比數(shù)列的通項公式求出的通項.(2)利用分組求和法可求數(shù)列的前項和.【詳解】(1)當(dāng)時,,所以,當(dāng)時,,①,②所以,即,又因為,故,所以,所以是首項,公比為的等比數(shù)列,故.(2)由得:數(shù)列為等差數(shù)列,公差,,,.【點睛】本題考查數(shù)列的通項與求和,注意數(shù)列求和關(guān)鍵看通項的結(jié)構(gòu)形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.19.(1)元.(2)①②萬元【解析】
(1)每件產(chǎn)品的銷售利潤為,由已知可得的取值,由頻率分布直方圖可得劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率,從而可得的概率分布列,依期望公式計算出期望即為平均銷售利潤;(2)①對取自然對數(shù),得,令,,,則,這就是線性回歸方程,由所給公式數(shù)據(jù)計算出系數(shù),得線性回歸方程,從而可求得;②求出收益,可設(shè)換元后用導(dǎo)數(shù)求出最大值.【詳解】解:(1)設(shè)每件產(chǎn)品的銷售利潤為,則的可能取值為,,.由頻率分布直方圖可得產(chǎn)品為劣質(zhì)品、優(yōu)等品、特優(yōu)品的概率分別為、、.所以;;.所以的分布列為所以(元).即每件產(chǎn)品的平均銷售利潤為元.(2)①由,得,令,,,則,由表中數(shù)據(jù)可得,則,所以,即,因為取,所以,故所求的回歸方程為.②設(shè)年收益為萬元,則令,則,,當(dāng)時,,當(dāng)時,,所以當(dāng),即時,有最大值.即該企業(yè)每年應(yīng)該投入萬元營銷費,能使得該企業(yè)的年收益的預(yù)報值達(dá)到最大,最大收益為萬元.【點睛】本題考查頻率分布直方圖,考查隨機(jī)變量概率分布列與期望,考查求線性回歸直線方程,及回歸方程的應(yīng)用.在求指數(shù)型回歸方程時,可通過取對數(shù)的方法轉(zhuǎn)化為求線性回歸直線方程,然后再求出指數(shù)型回歸方程.20.(1)極大值,極小值;(2)詳見解析.【解析】
首先確定函數(shù)的定義域和;(1)當(dāng)時,根據(jù)的正負(fù)可確定單調(diào)性,進(jìn)而確定極值點,代入可求得極值;(2)通過分析法可將問題轉(zhuǎn)化為證明,設(shè),令,利用導(dǎo)數(shù)可證得,進(jìn)而得到結(jié)論.【詳解】由題意得:定義域為,,(1)當(dāng)時,,當(dāng)和時,;當(dāng)時,,在,上單調(diào)遞增,在上單調(diào)遞減,極大值為,極小值為.(2)要證:,即證:,即證:,化簡可得:.,,即證:,設(shè),令,則,在上單調(diào)遞增,,則由,從而有:.【點睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到函數(shù)極值的求解、利用導(dǎo)數(shù)證明不等式的問題;本題不等式證明的關(guān)鍵是能夠?qū)⒍鄠€變量的問題轉(zhuǎn)化為一個
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 胸外科護(hù)士工作心得
- 2025年全球及中國單擺銑頭行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球倒置行星滾柱絲杠行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國虛擬試穿平臺行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國汽車天線定位器行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國重載有軌穿梭小車(RGV)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025年全球及中國絲素蛋白敷料行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球直線式桁架機(jī)器人行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球裝運前檢驗(PSI)服務(wù)行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國電子鑰匙柜行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 江西省部分學(xué)校2024-2025學(xué)年高三上學(xué)期1月期末英語試題(含解析無聽力音頻有聽力原文)
- GA/T 2145-2024法庭科學(xué)涉火案件物證檢驗實驗室建設(shè)技術(shù)規(guī)范
- 2024年中考語文試題分類匯編:非連續(xù)性文本閱讀(學(xué)生版)
- 2024年度窯爐施工協(xié)議詳例細(xì)則版B版
- 第一屆山東省職業(yè)能力大賽濟(jì)南市選拔賽制造團(tuán)隊挑戰(zhàn)賽項目技術(shù)工作文件(含樣題)
- 尿毒癥替代治療
- 【課件】2025屆高考英語一輪復(fù)習(xí)小作文講解課件
- 基底節(jié)腦出血護(hù)理查房
- 工程公司總經(jīng)理年終總結(jié)
- 2024年海南省高考地理試卷(含答案)
- 【企業(yè)盈利能力探析的國內(nèi)外文獻(xiàn)綜述2400字】
評論
0/150
提交評論