2023年貴州裝備制造職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年貴州裝備制造職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年貴州裝備制造職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年貴州裝備制造職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年貴州裝備制造職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年貴州裝備制造職業(yè)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.下列各式中錯誤的是()

A.||2=2

B.||=||

C.0?=0

D.m(n)=mn(m,n∈R)答案:C2.在直角坐標系xOy中,i,j分別是與x軸,y軸平行的單位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,則實數(shù)m=______.答案:把AB、AC平移,使得點A與原點重合,則AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°時,AB?BC=0,∴(1,1)?(2-1,m-1)=0,得m=0;若∠A=90°時,AB?AC=0,∴(1,1)?(2,m)=0,得m=-2.若∠C=90°時,AC?BC=0,即2+m2-m=0,此方程無解,綜上,m為-2或0滿足三角形為直角三角形.故為-2或03.在殘差分析中,殘差圖的縱坐標為______.答案:有殘差圖的定義知道,作圖時縱坐標為殘差,橫坐標可以選為樣本編號,或身高數(shù)據(jù),或體重的估計值,這樣做出的圖形稱為殘差圖.故為:殘差.4.點(1,2)到直線x+2y+5=0的距離為______.答案:點(1,2)到直線x+2y+5=0的距離為d=|1+2×2+5|12+22=25故為:255.已知=2+i,則復數(shù)z=()

A.-1+3i

B.1-3i

C.3+i

D.3-i答案:B6.設拋物線C:y2=3px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為()

A.y2=4x或y2=8x

B.y2=2x或y2=8x

C.y2=4x或y2=16x

D.y2=2x或y2=16x答案:C7.用數(shù)學歸納法證明“<n(n∈N*,n>1)”時,由n=k(k>1)不等式成立,推證n=k+1時,左邊應增加的項數(shù)是()

A.2k-1

B.2k-1

C.2k

D.2k+1答案:C8.某車間工人已加工一種軸100件,為了了解這種軸的直徑,要從中抽出10件在同一條件下測量(軸的直徑要求為(20±0.5)mm),如何采用簡單隨機抽樣方法抽取上述樣本?答案:本題是一個簡單抽樣,∵100件軸的直徑的全體是總體,將其中的100個個體編號00,01,02,…,99,利用隨機數(shù)表來抽取樣本的10個號碼,可以從表中的第20行第3列的數(shù)開始,往右讀數(shù),得到10個號碼如下:16,93,32,43,50,27,89,87,19,20將上述號碼的軸在同一條件下測量直徑.9.天氣預報說,在今后的三天中每一天下雨的概率均為40%,用隨機模擬的方法進行試驗,由1、2、3、4表示下雨,由5、6、7、8、9、0表示不下雨,利用計算器中的隨機函數(shù)產(chǎn)生0~9之間隨機整數(shù)的20組如下:

907966191925271932812458569683

431257393027556488730113537989

通過以上隨機模擬的數(shù)據(jù)可知三天中恰有兩天下雨的概率近似為(

)。答案:0.2510.如圖,AB為⊙O的直徑,弦AC、BD交于點P,若AP=5,PC=3,DP=5,則AB=______.

答案:∵AP=5,PC=3,DP=5由相交弦定理可得:BP=35又∵AB為直徑,∴∠ACB=90°∴BC=PB2-PC2=6∴AB=AC2-BC2=10故為:1011.設集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件答案:B12.在獨立性檢驗中,統(tǒng)計量Χ2有兩個臨界值:3.841和6.635.當Χ2>3.841時,有95%的把握說明兩個事件有關(guān),當Χ2>6.635時,有99%的把握說明兩個事件有關(guān),當Χ2≤3.841時,認為兩個事件無關(guān).在一項打鼾與患心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計算Χ2=20.87.根據(jù)這一數(shù)據(jù)分析,認為打鼾與患心臟病之間()

A.有95%的把握認為兩者有關(guān)

B.約有95%的打鼾者患心臟病

C.有99%的把握認為兩者有關(guān)

D.約有99%的打鼾者患心臟病答案:C13.試指出函數(shù)y=3x的圖象經(jīng)過怎樣的變換,可以得到函數(shù)y=(13)x+1+2的圖象.答案:把函數(shù)y=3x的圖象經(jīng)過3次變換,可得函數(shù)y=(13)x+1+2的圖象,步驟如下:y=3x沿y軸對稱y=(13)x左移一個單位y=(13)x+1上移2個單位y=(13)x+1+2.14.如圖,半徑為R的球O中有一內(nèi)接圓柱.當圓柱的側(cè)面積最大時,球的表面積與該圓柱的側(cè)面積之差是______.

答案:設圓柱的上底面半徑為r,球的半徑與上底面夾角為α,則r=Rcosα,圓柱的高為2Rsinα,圓柱的側(cè)面積為:2πR2sin2α,當且僅當α=π4時,sin2α=1,圓柱的側(cè)面積最大,圓柱的側(cè)面積為:2πR2,球的表面積為:4πR2,球的表面積與該圓柱的側(cè)面積之差是:2πR2.故為:2πR215.設xi,yi

(i=1,2,…,n)是實數(shù),且x1≥x2≥…≥xn,y1≥y2≥…≥yn,而z1,z2,…,zn是y1,y2,…,yn的一個排列.求證:n

i-1(xi-yi)2≥n

i-1(xi-zi)2.答案:證明:要證ni-1(xi-yi)2≥ni-1(xi-zi)2,只需證

ni=1

yi2-2ni=1

xi?yi≥ni=1

zi2-2ni=1

xi?zi,由于ni=1

yi2=ni=1

zi2,故只需證ni=1

xi?zi≤ni=1

xi?yi

①.而①的左邊為亂序和,右邊為順序和,根據(jù)排序不等式可得①成立,故要證的不等式成立.16.若關(guān)于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實數(shù)a的取值范圍是

A.[-1,1]

B.[-1,3]

C.(-1,1)

D.(-1,3)答案:D17.如圖為某公司的組織結(jié)構(gòu)圖,則后勤部的直接領導是______.

答案:有已知中某公司的組織結(jié)構(gòu)圖,可得專家辦公室直接領導:財務部,后勤部和編輯部三個部門,故后勤部的直接領導是專家辦公室.故為:專家辦公室.18.語句“若a>b,則a+c>b+c”是()

A.不是命題

B.真命題

C.假命題

D.不能判斷真假答案:B19.已知一個球與一個正三棱柱的三個側(cè)面和兩個底面相切,若這個球的體積是32π3,則這個三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h=4.設其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48320.用反證法證明某命題時,對結(jié)論:“自然數(shù)a,b,c中恰有一個偶數(shù)”正確的假設為()

A.a(chǎn),b,c都是奇數(shù)

B.a(chǎn),b,c都是偶數(shù)

C.a(chǎn),b,c中至少有兩個偶數(shù)

D.a(chǎn),b,c中至少有兩個偶數(shù)或都是奇數(shù)答案:D21.直線x+1=0的傾斜角是______.答案:直線x+1=0與x軸垂直,所以直線的傾斜角為90°.故為:90°.22.某學生離家去學校,由于怕遲到,所以一開始就跑步,等跑累了再走余下的路程.

在如圖中縱軸表示離學校的距離,橫軸表示出發(fā)后的時間,則如圖中的四個圖形中較符合該學生走法的是()A.

B.

C.

D.

答案:由題意可知:由于怕遲到,所以一開始就跑步,所以剛開始離學校的距離隨時間的推移應該相對較快.而等跑累了再走余下的路程,則說明離學校的距離隨時間的推移在后半段時間應該相對較慢.所以適合的圖象為:故選B.23.已知函數(shù)y=與y=ax2+bx,則下列圖象正確的是(

)

A.

B.

C.

D.

答案:C24.已知a=(1,-2,1),a+b=(3,-6,3),則b等于()A.(2,-4,2)B.(-2,4,-2)C.(-2,0,-2)D.(2,1,-3)答案:∵a+b=(3,-6,3),∴b=a+b-a=(3,-6,3)-(1,-2,1)=(2,-4,2).故選A.25.試求288和123的最大公約數(shù)是

答案:3解析:,,,.∴和的最大公約數(shù)26.已知直線l的參數(shù)方程為x=-4+4ty=-1-2t(t為參數(shù)),圓C的極坐標方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.27.在直角三角形ABC中,∠ACB=90°,CD、CE分別為斜邊AB上的高和中線,且∠BCD與∠ACD之比為3:1,求證CD=DE.

答案:證明:∵∠A+∠ACD=∠A+∠B=90°,∴∠ACD=∠B又∵CE是直角△ABC的斜邊AB上的中線∴CE=EB∠B=∠ECB,∠ACD=∠ECB但∵∠BCD=3∠ACD,∠ECD=2∠ACD=12∠ACB=12×90°=45°,△EDC為等腰直角三角形∴CE=DE.28.(選做題)(幾何證明選講選做題)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點D,AD=2,則∠C的大小為______.答案:∵∠B=90°,AB=4,BC為圓的直徑∴AB與圓相切,由切割線定理得,AB2=AD?AC∴AC=8故∠C=30°故為:30°29.在5件產(chǎn)品中,有3件一等品,2件二等品.從中任取2件.那么以710為概率的事件是()A.都不是一等品B.至少有一件二等品C.恰有一件一等品D.至少有一件一等品答案:5件產(chǎn)品中,有3件一等品和2件二等品,從中任取2件,從5件產(chǎn)品中任取2件,共有C52=10種結(jié)果,∵“任取的2件產(chǎn)品都不是一等品”只有1種情況,其概率是110;“任取的2件產(chǎn)品中至少有一件二等品”有C31C21+1種情況,其概率是710;“任取的2件產(chǎn)品中恰有一件一等品”有C31C21種情況,其概率是610;“任取的2件產(chǎn)品在至少有一件一等品”有C31C21+C32種情況,其概率是910;∴以710為概率的事件是“至少有一件二等品”.故為B.30.直三棱柱ABC-A1B1C1

中,若CA=a,CB=b,CC1=c,則A1B=______.答案:向量加法的三角形法則,得到A1B=A1C+CB=A1C1+C1C+CB=-CA-CC1+CB=-a-c+b.故為:-a-c+b.31.下面四個結(jié)論:

①偶函數(shù)的圖象一定與y軸相交;

②奇函數(shù)的圖象一定通過原點;

③偶函數(shù)的圖象關(guān)于y軸對稱;

④既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是f(x)=0(x∈R),

其中正確命題的個數(shù)是()A.1B.2C.3D.4答案:偶函數(shù)的圖象關(guān)于y軸對稱,但不一定與y軸相交,因此①錯誤,③正確;奇函數(shù)的圖象關(guān)于原點對稱,但不一定經(jīng)過原點,只有在原點處有定義才通過原點,因此②錯誤;若y=f(x)既是奇函數(shù),又是偶函數(shù),由定義可得f(x)=0,但不一定x∈R,只要定義域關(guān)于原點對稱即可,因此④錯誤.故選A.32.北京期貨商會組織結(jié)構(gòu)設置如下:

(1)會員代表大會下設監(jiān)事會、會長辦公會,而會員代表大會于會長辦公會共轄理事會;

(2)會長辦公會設會長,會長管理秘書長;

(3)秘書長具體分管:秘書處、規(guī)范自律委員會、服務推廣委員會、發(fā)展創(chuàng)新委員會.

根據(jù)以上信息繪制組織結(jié)構(gòu)圖.答案:繪制組織結(jié)構(gòu)圖:33.如圖,已知△ABC,過頂點A的圓與邊BC切于BC的中點P,與邊AB、AC分別交于點M、N,且CN=2BM,點N平分AC.則AM:BM=()

A.2

B.4

C.6

D.7

答案:D34.已知在△ABC和點M滿足

MA+MB+MC=0,若存在實數(shù)m使得AB+AC=mAM成立,則m=______.答案:由點M滿足MA+MB+MC=0,知點M為△ABC的重心,設點D為底邊BC的中點,則AM=23AD=23×

12×(AB+AC)=13(AB+AC)∴AB+AC=3AM∴m=3故為:335.(不等式選講)

已知a>0,b>0,c>0,abc=1,試證明:.答案:略解析::證明:由,所以同理:

,

相加得:左3……………(10分)36.如圖所示,AF、DE分別是⊙O、⊙O1的直徑,AD與兩圓所在的平面均垂直,AD=8.BC是⊙O的直徑,AB=AC=6,

OE∥AD.

(1)求二面角B-AD-F的大?。?/p>

(2)求直線BD與EF所成的角的余弦值.答案:(1)二面角B—AD—F的大小為45°(2)直線BD與EF所成的角的余弦值為解析:(1)∵AD與兩圓所在的平面均垂直,∴AD⊥AB,AD⊥AF,故∠BAF是二面角B—AD—F的平面角.依題意可知,ABFC是正方形,∴∠BAF=45°.即二面角B—AD—F的大小為45°;(2)以O為原點,CB、AF、OE所在直線為坐標軸,建立空間直角坐標系(如圖所示),則O(0,0,0),A(0,-3,0),B(3,0,0),D(0,-3,8),E(0,0,8),F(xiàn)(0,3,0),∴=(-3,-3,8),=(0,3,-8).cos〈,〉=

==-.設異面直線BD與EF所成角為,則cos=|cos〈,〉|=.即直線BD與EF所成的角的余弦值為.37.a、b、c∈R,則下列命題為真命題的是______.

①若a>b,則ac2>bc2

②若ac2>bc2,則a>b

③若a<b<0,則a2>ab>b2

④若a<b<0,則1a<1b.答案:當c=0時,ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③38.已知一種材料的最佳加入量在100g到200g之間,若用0.618法安排試驗,則第一次試點的加入量可以是(

)g。答案:161.8或138.239.若雙曲線與橢圓x216+y225=1有相同的焦點,與雙曲線x22-y2=1有相同漸近線,求雙曲線方程.答案:依題意可設所求的雙曲線的方程為y2-x22=λ(λ>0)…(3分)即y2λ-x22λ=1…(5分)又∵雙曲線與橢圓x216+y225=1有相同的焦點∴λ+2λ=25-16=9…(9分)解得λ=3…(11分)∴雙曲線的方程為y23-x26=1…(13分)40.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()

A.2

B.

C.4

D.

答案:C41.在△ABC中,已知A(2,3),B(8,-4),點G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標為______.答案:設C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).42.直線y=3x+3的傾斜角的大小為______.答案:∵直線y=3x+3的斜率等于3,設傾斜角等于α,則0°≤α<180°,且tanα=3,∴α=60°,故為60°.43.(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)

A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐標系與參數(shù)方程選做題)在極坐標系中,圓ρ=-2sinθ的圓心的極坐標是______.

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點F,E是AB延長線上一點,且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長為______.答案:A.∵|x-5|+|x+3|≥10,∴當x≥5時,x-5+x+3≥10,∴x≥6;當x≤-3時,有5-x+(-x-3)≥10,∴x≤-4;當-4<x<5時,有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標為(-1,0),∴其極坐標是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.44.圓心既在直線x-y=0上,又在直線x+y-4=0上,且經(jīng)過原點的圓的方程是______.答案:∵圓心既在直線x-y=0上,又在直線x+y-4=0上,∴由x-y=0x+y-4=0,得x=2y=2.∴圓心坐標為(2,2),∵圓經(jīng)過原點,∴半徑r=22,故所求圓的方程為(x-2)2+(y-2)2=8.45.設x>0,y>0且x≠y,求證答案:證明略解析:由x>0,y>0且x≠y,要證明只需

即只需由條件,顯然成立.∴原不等式成立46.在空間直角坐標系中,已知A,B兩點的坐標分別是A(2,3,5),B(3,1,4),則這兩點間的距離|AB|=______.答案:∵A,B兩點的坐標分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.47.在正方體ABCD-A1B1C1D1中,直線BC1與平面A1BD所成角的余弦值是______.答案:分別以DA、DC、DD1為x、y、z軸建立如圖所示空間直角坐標系設正方體的棱長等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)設n=(x,y,z)是平面A1BD的一個法向量,則n?A1D=-x-z=0n?BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一個法向量為n=(1,-1,-1)設直線BC1與平面A1BD所成角為θ,則sinθ=|cos<BC1,n>|=BC1?n|BC1|?n=63∴cosθ=1-sin2θ=33,即直線BC1與平面A1BD所成角的余弦值是33故為:3348.在△ABC中,已知角A,B,C所對的邊依次為a,b,c,且2lg(sinB)=lg(sinA)+lg(sinC),則兩條直線l1:xsinA+ysinB=a與l2:xsinB+ysinC=c的位置關(guān)系是______.答案:依題意,sin2B=sinA?sinC,∴sinAsinB=sinBsinC,即兩直線方程中x的系數(shù)之比與y的系數(shù)之比相等,∴兩條直線l1:xsinA+ysinB=a與l2:xsinB+ysinC=c平行或重合.故為:平行或重合.49.下列賦值語句中正確的是()

A.m+n=3

B.3=i

C.i=i2+1

D.i=j=3答案:C50.函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),則a+b=______.答案:∵函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),∴其定義域關(guān)于原點對稱,既[a,b]關(guān)于原點對稱.所以a與b互為相反數(shù)即a+b=0.故為:0.第2卷一.綜合題(共50題)1.x2+(m-3)x+m=0

一個根大于1,一個根小于1,m的范圍是______.答案:設f(x)=x2+(m-3)x+m,則∵x2+(m-3)x+m=0一個根大于1,一個根小于1,∴f(1)<0∴1+(m-3)+m<0∴m<1故為m<1.2.根據(jù)一組數(shù)據(jù)判斷是否線性相關(guān)時,應選用()

A.散點圖

B.莖葉圖

C.頻率分布直方圖

D.頻率分布折線圖答案:A3.在程序語言中,下列符號分別表示什么運算*;\;∧;SQR;ABS?答案:“*”表示乘法運算;“\”表示除法運算;“∧”表示乘方運算;“SQR()”表示求算術(shù)平方根運算;“ABS()”表示求絕對值運算.4.給出命題:

①線性回歸分析就是由樣本點去尋找一條貼近這些點的直線;

②利用樣本點的散點圖可以直觀判斷兩個變量的關(guān)系是否可以用線性關(guān)系表示;

③通過回歸方程=bx+a及其回歸系數(shù)b可以估計和預測變量的取值和變化趨勢;

④線性相關(guān)關(guān)系就是兩個變量間的函數(shù)關(guān)系.其中正確的命題是(

A.①②

B.①④

C.①②③

D.①②③④答案:D5.某細胞在培養(yǎng)過程中,每15分鐘分裂一次(由1個細胞分裂成2個),則經(jīng)過兩個小時后,1個這樣的細胞可以分裂成______個.答案:由于每15分鐘分裂一次,則兩個小時共分裂8次.一個這樣的細胞經(jīng)過一次分裂后,由1個分裂成2個;經(jīng)過2次分裂后,由1個分裂成22個;…經(jīng)過8次分裂后,由1個分裂成28個.∴1個這樣的細胞經(jīng)過兩個小時后,共分裂成28個,即256個.故為:2566.已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點為P(2,3),求過兩點Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直線方程.答案:∵P(2,3)在已知直線上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直線方程為y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.7.如圖,△ABC中,AD=2DB,AE=3EC,CD與BE交于F,若AF=xAB+yAC,則()A.x=13,y=12B.x=14,y=13C.x=37,y=37D.x=25,y=920答案:過點F作FM∥AC、FN∥AB,分別交AB、AC于點M、N∵FM∥AC,∴FMAC=DMAD且FMAE=BMAB∵AD=2DB,AE=3EC,∴AD=23AB,AE=34AC.由此可得AM=13AB同理可得AN=12AC∵四邊形AMFN是平行四邊形∴由向量加法法則,得AF=13AB+12AC∵AF=xAB+yAC,∴根據(jù)平面向量基本定理,可得x=13,y=12故選:A8.正方體的全面積為18cm2,則它的體積是()A.4cm3B.8cm3C.11272cm3D.33cm3答案:設正方體邊長是acm,根據(jù)題意得6a2=18,解得a=3,∴正方體的體積是33cm3.故選D.9.如圖,在空間直角坐標系中,已知直三棱柱的頂點A在x軸上,AB平行于y軸,側(cè)棱AA1平行于z軸.當頂點C在y軸正半軸上運動時,以下關(guān)于此直三棱柱三視圖的表述正確的是()

A.該三棱柱主視圖的投影不發(fā)生變化

B.該三棱柱左視圖的投影不發(fā)生變化

C.該三棱柱俯視圖的投影不發(fā)生變化

D.該三棱柱三個視圖的投影都不發(fā)生變化

答案:B10.下列語句不屬于基本算法語句的是()

A.賦值語句

B.運算語句

C.條件語句

D.循環(huán)語句答案:B11.(文)橢圓的一個焦點與短軸的兩端點構(gòu)成一個正三角形,則該橢圓的離心率為()

A.

B.

C.

D.不確定答案:C12.在空間直角坐標系0xyz中有兩點A(2,5,1)和B(2,4,-1),則|AB|=______.答案:∵點A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故為5.13.如果x2+ky2=2表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是

______.答案:根據(jù)題意,x2+ky2=2化為標準形式為x22+y22k=1;根據(jù)題意,其表示焦點在y軸上的橢圓,則有2k>2;解可得0<k<1;故為0<k<1.14.給出以下四個對象,其中能構(gòu)成集合的有()

①教2011屆高一的年輕教師;

②你所在班中身高超過1.70米的同學;

③2010年廣州亞運會的比賽項目;

④1,3,5.A.1個B.2個C.3個D.4個答案:解析:因為未規(guī)定年輕的標準,所以①不能構(gòu)成集合;由于②③④中的對象具備確定性、互異性,所以②③④能構(gòu)成集合.故選C.15.直線x3+y4=t被兩坐標軸截得的線段長度為1,則t的值是

______.答案:令y=0,得:x=3t;令x=0,得:y=4t,所以被兩坐標軸截得的線段長度為(3t)2+(4t)2=|5t|=1所以t=±15故為±1516.某校有老師200人,男學生1200人,女學生1000人.現(xiàn)用分層抽樣的方法從所有師生中抽取一個容量為n的樣本;已知從女學生中抽取的人數(shù)為80人,則n=______.答案:∵某校有老師200人,男學生1

200人,女學生1

000人.∴學校共有200+1200+1000人由題意知801000=n200+1200+1000,∴n=192.故為:19217.對于函數(shù)y=f(x),在給定區(qū)間上有兩個數(shù)x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數(shù)B.一定是減函數(shù)C.可能是常數(shù)函數(shù)D.單調(diào)性不能確定答案:解析:由單調(diào)性定義可知,不能用特殊值代替一般值.故選D.18.(選做題)參數(shù)方程中當t為參數(shù)時,化為普通方程為(

)。答案:x2-y2=119.(每題6分共12分)解不等式

(1)(2)答案:(1)(2)解析:本試題主要是考查了分式不等式和一元二次不等式的求解,以及含有根式的二次不等式的求解運用。(1)移向,通分,合并,將分式化為整式,然后得到解集。(2)首先分析函數(shù)式有意義的x的取值,然后保證兩邊都有意義的時候,且都為正,兩邊平方求解得到。解:(2)當8-x<0顯然成立。當8-x》0時,則兩邊平方可得。所以20.六個不同大小的數(shù)按如圖形式隨機排列,設第一行這個數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個數(shù)______.答案:首先M3一定是6個數(shù)中最大的,設這六個數(shù)分別為a,b,c,d,e,f,不妨設a>b>c>d>e>f.因為如果a在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時無法滿足M1<M2<M3,故a一定在第三行.故

M2一定是b,c,d中一個,否則,若M2是e,則第二行另一個數(shù)只能是f,那么第一行的數(shù)就比e大,無法滿足M1<M2<M3.當M2是b時,此時,a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31

C21

A44=144(種),當M2是c時,此時a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32

C21

A33=72(種),當M2是d時,此時,a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33

C21

A22=24(種),故滿足M1<M2<M3所有排列的個數(shù)為:24+72+144=240種,故為:240.21.下面玩擲骰子放球游戲,若擲出1點或6點,甲盒放一球;若擲出2點,3點,4點或5點,乙盒放一球,設擲n次后,甲、乙盒內(nèi)的球數(shù)分別為x、y.

(1)當n=3時,設x=3,y=0的概率;

(2)當n=4時,求|x-y|=2的概率.答案:由題意知,在甲盒中放一球概率為13,在乙盒放一球的概率為23(3分)(1)當n=3時,x=3,y=0的概率為C03(13)3(23)0=127(6分)(2)|x-y|=2時,有x=3,y=1或x=1,y=3,它的概率為C14

(13)3(23)1+C34(13)1(23)3=4081(12分).22.圓柱的底面積為S,側(cè)面展開圖為正方形,那么這個圓柱的側(cè)面積為()A.πSB.2πSC.3πSD.4πS答案:設圓柱的底面半徑是R,母線長是l,∵圓柱的底面積為S,側(cè)面展開圖為正方形,∴πR2=S,且l=2πR,∴圓柱的側(cè)面積為2πRl=4πS.故選D.23.已知a,b,c∈R,a+2b+3c=6,則a2+4b2+9c2的最小值為______.答案:∵a+2b+3c=6,∴根據(jù)柯西不等式,得(a+2b+3c)2=(1×a+1×2b+1×3c)2≤(12+12+12)[a2+(2b)2+(3c)2]化簡得62≤3(a2+4b2+9c2),即36≤3(a2+4b2+9c2)∴a2+4b2+9c2≥12,當且僅當a:2b:3c=1:1:1時,即a=2,b=1,c=23時等號成立由此可得:當且僅當a=2,b=1,c=23時,a2+4b2+9c2的最小值為12故為:1224.已知f(n)=1+12+13+L+1n(n∈N*),用數(shù)學歸納法證明f(2n)>n2時,f(2k+1)-f(2k)等于______.答案:因為假設n=k時,f(2k)=1+12+13+…+12k,當n=k+1時,f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故為:12k+1+12k+2+…+12k+125.現(xiàn)有10個保送上大學的名額,分配給7所學校,每校至少有1個名額,名額分配的方法共有______種(用數(shù)字作答).答案:根據(jù)題意,將10個名額,分配給7所學校,每校至少有1個名額,可以轉(zhuǎn)化為10個元素之間有9個間隔,要求分成7份,每份不空;相當于用6塊檔板插在9個間隔中,共有C96=84種不同方法.所以名額分配的方法共有84種.26.點P(x,y)是橢圓2x2+3y2=12上的一個動點,則x+2y的最大值為______.答案:把橢圓2x2+3y2=12化為標準方程,得x26+y24=1,∴這個橢圓的參數(shù)方程為:x=6cosθy=2sinθ,(θ為參數(shù))∴x+2y=6cosθ+4sinθ,∴(x+2y)max=6+16=22.故為:22.27.極坐標系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點).答案:∵極坐標系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|

=

3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.28.給定兩個長度為1的平面向量OA和OB,它們的夾角為90°.如圖所示,點C在以O為圓心的圓弧AB上變動,若OC=xOA+yOB,其中x,y∈R,則xy的范圍是______.答案:由OC=xOA+yOB?OC2=x2OA2+y2OB2+2xyOA?OB,又|OC|=|OA|=|OB|=1,OA?OB=0,∴1=x2+y2≥2xy,得xy≤12,而點C在以O為圓心的圓弧AB上變動,得x,y∈[0,1],于是,0≤xy≤12,故為[0,12].29.

選修1:幾何證明選講

如圖,設AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:

(1)l是⊙O的切線;

(2)PB平分∠ABD.答案:證明:(1)連接OP,因為AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,從而OP⊥l.因為P在⊙O上,所以l是⊙O的切線.(2)連接AP,因為l是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.30.平面內(nèi)有兩定點A、B及動點P,設命題甲是:“|PA|+|PB|是定值”,命題乙是:“點P的軌跡是以A.B為焦點的橢圓”,那么()A.甲是乙成立的充分不必要條件B.甲是乙成立的必要不充分條件C.甲是乙成立的充要條件D.甲是乙成立的非充分非必要條件答案:命題甲是:“|PA|+|PB|是定值”,命題乙是:“點P的軌跡是以A.B為焦點的橢圓∵當一個動點到兩個頂點距離之和等于定值時,再加上這個和大于兩個定點之間的距離,可以得到動點的軌跡是橢圓,沒有加上的條件不一定推出,而點P的軌跡是以A.B為焦點的橢圓,一定能夠推出|PA|+|PB|是定值,∴甲是乙成立的必要不充分條件故選B.31.如圖,在等邊△ABC中,以AB為直徑的⊙O與BC相交于點D,連接AD,則∠DAC的度數(shù)為

______度.答案:∵AB是⊙O的直徑,∴∠ADB=90°,即AD⊥BC;又∵△ABC是等邊三角形,∴DA平分∠BAC,即∠DAC=12∠BAC=30°.故為:30.32.已知斜二測畫法得到的直觀圖△A′B′C′是正三角形,畫出原三角形的圖形.答案:由斜二測法知:B′C′不變,即BC與B′C′重合,O′A′由傾斜45°變?yōu)榕cx軸垂直,并且O′A′的長度變?yōu)樵瓉淼?倍,得到OA,由此得到原三角形的圖形ABC.33.構(gòu)成多面體的面最少是()

A.三個

B.四個

C.五個

D.六個答案:B34.已知x2a2+y2b2=1(a>b>0),則a2+b2與(x+y)2的大小關(guān)系為

______.答案:由已知x2a2+y2b2=1(a>b>0)和柯西不等式的二維形式.得a2+b2=(a2+b2)(x2a2+y2b2)≥(a?xa+b?yb)2=(x+y)2.故為a2+b2≥(x+y)2.35.若向量a=(2,-3,1),b=(2,0,3),c=(0,2,2),則a?(b+c)=33.答案:∵b+c=(2,0,3)+(0,2,2)=(2,2,5),∴a?(b+c)=(2,-3,1)?(2,2,5)=4-6+5=3.故為:3.36.i是虛數(shù)單位,a,b∈R,若ia+bi=1+i,則a+b=______.答案:∵ia+bi=1+i,a,b∈R,∴i(a-bi)(a+bi)(a-bi)=1+i,∴b+aia2+b2=1+i,化為b+ai=(a2+b2)+(a2+b2)i,根據(jù)復數(shù)相等的定義可得b=a2+b2a=a2+b2,a2+b2≠0解得a=b=12.∴a+b=1.故為1.37.若向量=(1,λ,2),=(-2,1,1),,夾角的余弦值為,則λ等于()

A.1

B.-1

C.±1

D.2答案:A38.復數(shù)32i+11-i的虛部是______.答案:復數(shù)32i+11-i=32i+1+i(1-i)(1+i)=32i+1+i2=12+2i∴復數(shù)的虛部是2,故為:239.刻畫數(shù)據(jù)的離散程度的度量,下列說法正確的是()

(1)應充分利用所得的數(shù)據(jù),以便提供更確切的信息;

(2)可以用多個數(shù)值來刻畫數(shù)據(jù)的離散程度;

(3)對于不同的數(shù)據(jù)集,其離散程度大時,該數(shù)值應越?。?/p>

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正確答案:C40.直線l1:x+3=0與直線l2:x+3y-1=0的夾角的大小為______.答案:由于直線l1:x+3=0的斜率不存在,故它的傾斜角為90°,直線l2:x+3y-1=0的斜率為-33,故它的傾斜角為150>,故這兩條直線的夾角為60°,故為60°.41.如圖所示,已知PA切圓O于A,割線PBC交圓O于B、C,PD⊥AB于D,PD與AO的延長線相交于點E,連接CE并延長交圓O于點F,連接AF.

(1)求證:B,C,E,D四點共圓;

(2)當AB=12,tan∠EAF=23時,求圓O的半徑.答案:(1)由切割線定理PA2=PB?PC由已知易得Rt△PAD∽Rt△PEA,∴PA2=PD?PE,∴PA2=PB?PC=PA2=PD?PE,又∠BPD為公共角,∴△PBD∽△PEC,∴∠BDP=∠C∴B,C,E,D四點共圓

(2)作OG⊥AB于G,由(1)知∠PBD=∠PEC,∵∠PBD=∠F,∴∠F=∠PEC,∴PE∥AF.∵AB=12,∴AG=6.∵PD⊥AB,∴PD∥OG.∴PE∥OG∥AF,∴∠AOG=∠EAF.在Rt△AOG中,tan∠AOG=tan∠EAF=23=6OG,∴OG=9∴R=AO=AG2+OG2=313∴圓O的半徑313.42.在△ABC中,已知向量=(cos18°,cos72°),=(2cos63°,2cos27°),則△ABC的面積等于()

A.

B.

C.

D.

答案:A43.點P(2,1)到直線

3x+4y+10=0的距離為()A.1B.2C.3D.4答案:由P(2,1),直線方程為3x+4y+10=0,則P到直線的距離d=|6+4+10|32+42=4.故選D44.在語句PRINT

3,3+2的結(jié)果是()

A.3,3+2

B.3,5

C.3,5

D.3,2+3答案:B45.已知直線的斜率為3,則此直線的傾斜角為()A.30°B.60°C.45°D.120°答案:∵直線的斜率為3,∴直線傾斜角α滿足tanα=3結(jié)合α∈[0°,180°),可得α=60°故選:B46.若向量,則這兩個向量的位置關(guān)系是___________。答案:垂直47.右圖程序運行后輸出的結(jié)果為()

A.3456

B.4567

C.5678

D.6789

答案:A48.兩條直線l1:x-3y+2=0與l2:x-y+2=0的夾角的大小是______.答案:由于兩條直線l1:x-3y+2=0與l2:x-y+2=0的斜率分別為33、1,設兩條直線的夾角為θ,則tanθ=|k2-k11+k2?k1|=|1-331+1×33|=3-33+3=2-3,∴tan2θ=2tanθ1-tan2θ=33,∴2θ=π6,θ=π12,故為π12.49.復數(shù),且A+B=0,則m的值是()

A.

B.

C.-

D.2答案:C50.極點到直線ρ(cosθ+sinθ)=3的距離是

______.答案:將原極坐標方程ρ(cosθ+sinθ)=3化為:直角坐標方程為:x+y=3,原點到該直線的距離是:d=|3|2=62.∴所求的距離是:62.故填:62.第3卷一.綜合題(共50題)1.四支足球隊爭奪冠、亞軍,不同的結(jié)果有()

A.8種

B.10種

C.12種

D.16種答案:C2.拋物線的頂點在原點,焦點與橢圓=1的一個焦點重合,則拋物線方程是()

A.x2=±8y

B.y2=±8x

C.x2=±4y

D.y2=±4x答案:A3.不等式>1–log2x的解是(

A.x≥2

B.x>1

C.1xx>2答案:B4.如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.

(1)求證:圓心O在直線AD上.

(2)求證:點C是線段GD的中點.答案:證明:(1)∵AB=AC,AF=AE∴CD=BE又∵CF=CD,BD=BE∴CD=BD又∵△ABC是等腰三角形,∴AD是∠CAB的角分線∴圓心O在直線AD上.(5分)(II)連接DF,由(I)知,DH是⊙O的直徑,∴∠DHF=90°,∴∠FDH+∠FHD=90°又∵∠G+∠FHD=90°∴∠FDH=∠G∵⊙O與AC相切于點F∴∠AFH=∠GFC=∠FDH∴∠GFC=∠G∴CG=CF=CD∴點C是線段GD的中點.(10分)5.從1,2,3,4,5中不放回地依次取2個數(shù),事件A=“第一次取到的是奇數(shù)”,B=“第二次取到的是奇數(shù)”,則P(B|A)=()

A.

B.

C.

D.答案:D6.過點A(-1,4)作圓C:(x-2)2+(y-3)2=1的切線l,求切線l的方程.答案:設方程為y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切線l的方程為y=4或3x+4y-13=07.根據(jù)如圖的框圖,寫出打印的第五個數(shù)是______.答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是:輸出N<35時,打印A值.程序在運行過程中各變量的情況如下表示:

是否繼續(xù)循環(huán)

A

N循環(huán)前

1

1

第一圈

2×1+1=3

2

是第二圈

2×3+1=7

3

是第三圈

2×7+1=15

4

是第四圈

2×15+1=31

5

是…所以這個打印的第五個數(shù)是31.故為:318.經(jīng)過點M(1,1)且在兩軸上截距相等的直線是______.答案:①當所求的直線與兩坐標軸的截距不為0時,設該直線的方程為x+y=a,把(1,1)代入所設的方程得:a=2,則所求直線的方程為x+y=2;②當所求的直線與兩坐標軸的截距為0時,設該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x9.拋物線C:y=x2上兩點M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設M(x1,x12),N(x2,x22),則MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因為MN=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,聯(lián)立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故為10.10.(參數(shù)方程與極坐標)已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點,M(12,0),則|MF|的值是

______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:2211.如圖:在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點.若則下列向量中與相等的向量是()

A.

B.

C.

D.

答案:A12.已知⊙C1:x2+y2+2x+8y-8=0,⊙C2:x2+y2-4x-4y-2=0,則的位置關(guān)系為()

A.相切

B.相離

C.相交

D.內(nèi)含答案:C13.比較大?。篴=0.20.5,b=0.50.2,則()

A.0<a<b<1

B.0<b<a<1

C.1<a<b

D.1<b<a答案:A14.以下命題:

①二直線平行的充要條件是它們的斜率相等;

②過圓上的點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2;

③平面內(nèi)到兩定點的距離之和等于常數(shù)的點的軌跡是橢圓;

④拋物線上任意一點M到焦點的距離都等于點M到其準線的距離.

其中正確命題的標號是______.答案:①兩條直線平行的充要條件是它們的斜率相等,且截距不等,故①不正確,②過點(x0,y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2.②正確,③不正確,若平面內(nèi)到兩定點距離之和等于常數(shù),如這個常數(shù)正好為兩個點的距離,則動點的軌跡是兩點的連線段,而不是橢圓;④根據(jù)拋物線的定義知:拋物線上任意一點M到焦點的距離都等于點M到其準線的距離.故④正確.故為:②④.15.如圖,CD是⊙O的直徑,AE切⊙O于點B,連接DB,若∠D=20°,則∠DBE的大小為()

A.20°

B.40°

C.60°

D.70°答案:D16.對某種電子元件進行壽命跟蹤調(diào)查,所得樣本頻率分布直方圖如圖,由圖可知:一批電子元件中,壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是()A.12B.13C.14D.16答案:由于已知的頻率分布直方圖中組距為100,壽命在100~300小時的電子元件對應的矩形的高分別為:12000,32000則壽命在100~300小時的電子元件的頻率為:100?(12000+32000)=0.2壽命在300~600小時的電子元件對應的矩形的高分別為:1400,1250,32000則壽命在300~600小時子元件的頻率為:100?(1400+1250+32000)=0.8則壽命在100~300小時的電子元件的數(shù)量與壽命在300~600小時的電子元件的數(shù)量的比大約是0.2:0.8=14故選C17.有一矩形紙片ABCD,按圖所示方法進行任意折疊,使每次折疊后點B都落在邊AD上,將B的落點記為B′,其中EF為折痕,點F也可落在邊CD上,過B′作B′H∥CD交EF于點H,則點H的軌跡為()A.圓的一部分B.橢圓的一部分C.雙曲線的一部分D.拋物線的一部分答案:由題意知:點H到定點B的距離以及到定直線AD的距離相等,根據(jù)拋物線的定義可知:點H的軌跡為:拋物線,(拋物線的一部分)故選D.18.如圖是一幾何體的三視圖,正視圖是一等腰直角三角形,且斜邊BD長為2;側(cè)視圖一直角三角形;俯視圖為一直角梯形,且AB=BC=1,則異面直線PB與CD所成角的正切值是()A.1B.2C.12D.12答案:取AD的中點E,連接BE,PE,CE,根據(jù)題意可知BE∥CD,∴∠PBE為異面直線PB與CD所成角根據(jù)條件知,PE=1,BE=2,PE⊥BE∴tan∠PBE=12故選C.19.復數(shù)(12+32i)3i的值為______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+

isinπ2=cosπ2+isinπ2=i,故為:i.20.如果執(zhí)行如圖的程序框圖,那么輸出的S=______.答案:根據(jù)題意可知該循環(huán)體運行4次第一次:i=2,s=4,第二次:i=3,s=10,第三次:i=4,s=22,第四次:i=5,s=46,因為i=5>4,結(jié)束循環(huán),輸出結(jié)果S=46.故為:46.21.已知正方體ABCD-A1B1C1D1中,M、N分別為BB1、C1D1的中點,建立適當?shù)淖鴺讼?,求平面AMN的法向量.答案:(-3,2,-4)為平面AMN的一個法向量.解析:以D為原點,DA、DC、DD1所在直線為坐標軸建立空間直角坐標系.(如圖所示).設棱長為1,則A(1,0,0),M(1,1,),N(0,,1).∴=(0,1,),=(-1,,1).設平面AMN的法向量n=(x,y,z)∴令y=2,∴x=-3,z=-4.∴n=(-3,2,-4).∴(-3,2,-4)為平面AMN的一個法向量.22.為了了解某地母親身高x與女兒身高y的相關(guān)關(guān)系,隨機測得10對母女的身高如下表所示:

母親身高x(cm)159160160163159154159158159157女兒身高y(cm)158159160161161155162157162156計算x與y的相關(guān)系數(shù)r=0.71,通過查表得r的臨界值r0.05=______,從而有______的把握認為x與y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過計算得到回歸直線方程為y=35.2+0.78x,當母親身高每增加1cm時,女兒身高______,當母親的身高為161cm時,估計女兒的身高為______cm.答案:查對臨界值表,由臨界值r0.05=0.632,可得有95%的把握認為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=35.2+0.78x,因此,當母親身高每增加1cm時,女兒身高0.78,當x=161cm時,y=35.2+0.78x=35.2+0.78×161≈161cm故為:0.632,95%,0.78,161cm.23.兩平行直線x+3y-4=0與2x+6y-9=0的距離是

______.答案:由直線x+3y-4=0取一點A,令y=0得到x=4,即A(4,0),則兩平行直線的距離等于A到直線2x+6y-9=0的距離d=|8-9|22+62=1210=1020.故為:102024.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.

(1)畫出執(zhí)行該問題的程序框圖;

(2)以下是解決該問題的一個程序,但有2處錯誤,請找出錯誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿足條件退出循環(huán),While錯誤,應改成LOOP

UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1

應改為輸出n;25.下表表示y是x的函數(shù),則函數(shù)的值域是

______.

答案:有圖表可知,所有的函數(shù)值構(gòu)成的集合為{2,3,4,5},故函數(shù)的值域為{2,3,4,5}.26.下列圖形中不一定是平面圖形的是()

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B27.

已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()

A.

B.

C.

D.答案:D28.把點按向量平移到點,則的圖象按向量平移后的圖象的函數(shù)表達式為(

).A.B.C.D.答案:D解析:,由可得,所以平移后的函數(shù)解析式為29.若A,B,C是直線存在實數(shù)x使得,實數(shù)x為()

A.-1

B.0

C.

D.答案:A30.已知雙曲線C:x2a2-y2b2=1(a>0,b>0)的一個焦點是F2(2,0),且b=3a.

(1)求雙曲線C的方程;

(2)設經(jīng)過焦點F2的直線l的一個法向量為(m,1),當直線l與雙曲線C的右支相交于A,B不同的兩點時,求實數(shù)m的取值范圍;并證明AB中點M在曲線3(x-1)2-y2=3上.

(3)設(2)中直線l與雙曲線C的右支相交于A,B兩點,問是否存在實數(shù)m,使得∠AOB為銳角?若存在,請求出m的范圍;若不存在,請說明理由.答案:(1)c=2c2=a2+b2∴4=a2+3a2∴a2=1,b2=3,∴雙曲線為x2-y23=1.(2)l:m(x-2)+y=0由y=-mx+2mx2-y23=1得(3-m2)x2+4m2x-4m2-3=0由△>0得4m4+(3-m2)(4m2+3)>012m2+9-3m2>0即m2+1>0恒成立又x1+x2>0x1?x2>04m2m2-3>04m2+3m2-3>0∴m2>3∴m∈(-∞,-3)∪(3,+∞)設A(x1,y1),B(x2,y2),則x1+x22=2m2m2-3y1+y22=-2m3m2-3+2m=-6mm2-3∴AB中點M(2m2m2-3,-6mm2-3)∵3(2m2m2-3-1)2-36m2(m2-3)2=3×(m2+3)2(m2-3)2-36m2(m2-3)2=3?m4+6m2+9-12m2(m2-3)2=3∴M在曲線3(x-1)2-y2=3上.(3)A(x1,y1),B(x2,y2),設存在實數(shù)m,使∠AOB為銳角,則OA?OB>0∴x1x2+y1y2>0因為y1y2=(-mx1+2m)(-mx2+2m)=m2x1x2-2m2(x1+x2)+4m2∴(1+m2)x1x2-2m2(x1+x2)+4m2>0∴(1+m2)(4m2+3)-8m4+4m2(m2-3)>0即7m2+3-12m2>0∴m2<35,與m2>3矛盾∴不存在31.已知A(0,1),B(3,7),C(x,15)三點共線,則x的值是()

A.5

B.6

C.7

D.8答案:C32.“∵四邊形ABCD為矩形,∴四邊形ABCD的對角線相等”,補充以上推理的大前提為()

A.正方形都是對角線相等的四邊形

B.矩形都是對角線相等的四邊形

C.等腰梯形都是對角線相等的四邊形

D.矩形都是對邊平行且相等的四邊形答案:B33.已知ABCD是平行四邊形,P點是ABCD所在平面外的一點,連接PA、PB、PC、PD.設點E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心.

(1)試用向量方法證明E、F、G、H四點共面;

(2)試判斷平面EFGH與平面ABCD的位置關(guān)系,并用向量方法證明你的判斷.答案:(1)證明略(2)平面EFGH∥平面ABCD解析:(1)

分別延長PE、PF、PG、PH交對邊于M、N、Q、R點,因為E、F、G、H分別是所在三角形的重心,所以M、N、Q、R為所在邊的中點,順次連接M、N、Q、R得到的四邊形為平行四邊形,且有=,=,=,

=∴=+=(-)+(-)=(-)+(-)=(+)又∵=-=-=∴=(+),∴=+由共面向量定理知:E、F、G、H四點共面.(2)

由(1)得=,故∥.又∵平面ABC,EG平面ABC.∴EG∥平面ABC.又∵=-=-=∴MN∥EF,又∵MN平面ABC,EF平面ABC,EF∥平面ABC.∵EG與EF交于E點,∴平面EFGH∥平面ABCD.34.已知x+5y+3z=1,則x2+y2+z2的最小值為______.答案:證明:35(x2+y2+z2)×(1+25+9)≥(x+5y+3z)2=1∴x2+y2+z2≥135,則x2+y2+z2的最小值為135,故為:135.35.(1+2x)10的展開式的第4項是______.答案:(1+2x)10的展開式的第4項為T4=C310

(2X)3=960x3,故為960x3.36.已知點P為△ABC所在平面上的一點,且,其中t為實數(shù),若點P落在△ABC的內(nèi)部,則t的取值范圍是(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論