2023屆福建省福州市屏東中學中考一模數學試題含解析_第1頁
2023屆福建省福州市屏東中學中考一模數學試題含解析_第2頁
2023屆福建省福州市屏東中學中考一模數學試題含解析_第3頁
2023屆福建省福州市屏東中學中考一模數學試題含解析_第4頁
2023屆福建省福州市屏東中學中考一模數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質,對人體健康和大氣環(huán)境質量有很大危害.2.5μm用科學記數法可表示為()A. B. C. D.2.A、B兩地相距180km,新修的高速公路開通后,在A、B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h.若設原來的平均車速為xkm/h,則根據題意可列方程為A. B.C. D.3.一元二次方程(x+2017)2=1的解為()A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣20174.在平面直角坐標系xOy中,四條拋物線如圖所示,其解析式中的二次項系數一定小于1的是()A.y1 B.y2 C.y3 D.y45.如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),頂點坐標(1,n)與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①3a+b<0;②-1≤a≤-23;③對于任意實數m,a+b≥am2+bm總成立;④關于x的方程ax2A.1個B.2個C.3個D.4個6.如圖,右側立體圖形的俯視圖是()A.B.C.D.7.某居委會組織兩個檢查組,分別對“垃圾分類”和“違規(guī)停車”的情況進行抽查.各組隨機抽取轄區(qū)內某三個小區(qū)中的一個進行檢查,則兩個組恰好抽到同一個小區(qū)的概率是()A. B. C. D.8.若2<<3,則a的值可以是()A.﹣7 B. C. D.129.如圖,正方形ABCD的邊長為4,點M是CD的中點,動點E從點B出發(fā),沿BC運動,到點C時停止運動,速度為每秒1個長度單位;動點F從點M出發(fā),沿M→D→A遠動,速度也為每秒1個長度單位:動點G從點D出發(fā),沿DA運動,速度為每秒2個長度單位,到點A后沿AD返回,返回時速度為每秒1個長度單位,三個點的運動同時開始,同時結束.設點E的運動時間為x,△EFG的面積為y,下列能表示y與x的函數關系的圖象是()A. B.C. D.10.下列計算中,正確的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,將一塊含有30°角的直角三角板的兩個頂點疊放在長方形的兩條對邊上,如果∠1=27°,那么∠2=______°12.已知圓錐的底面半徑為40cm,母線長為90cm,則它的側面展開圖的圓心角為_______.13.已知正方形ABCD,AB=1,分別以點A、C為圓心畫圓,如果點B在圓A外,且圓A與圓C外切,那么圓C的半徑長r的取值范圍是_____.14.分式方程的解為x=_____.15.股市規(guī)定:股票每天的漲、跌幅均不超過10%,即當漲了原價的10%后,便不能再漲,叫做漲停;當跌了原價的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后兩天時間又漲回到原價,若這兩天此股票股價的平均增長率為x,則x滿足的方程是_____.16.已知拋物線y=x2﹣x+3與y軸相交于點M,其頂點為N,平移該拋物線,使點M平移后的對應點M′與點N重合,則平移后的拋物線的解析式為_____.三、解答題(共8題,共72分)17.(8分)已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(11,0),點B(0,6),點P為BC邊上的動點(點P不與點B、C重合),經過點O、P折疊該紙片,得點B′和折痕OP.設BP=t.(Ⅰ)如圖①,當∠BOP=300時,求點P的坐標;(Ⅱ)如圖②,經過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;(Ⅲ)在(Ⅱ)的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結果即可).18.(8分)凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.求一次至少購買多少只計算器,才能以最低價購買?求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數關系式,并寫出自變量x的取值范圍;一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?19.(8分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數分布表和統(tǒng)計圖,請你根據圖表中的信息完成下列問題:頻數分布表中a=,b=,并將統(tǒng)計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?20.(8分)已知關于x的方程.當該方程的一個根為1時,求a的值及該方程的另一根;求證:不論a取何實數,該方程都有兩個不相等的實數根.21.(8分)如圖:△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°求證:(1)△PAC∽△BPD;(2)若AC=3,BD=1,求CD的長.22.(10分)某商場甲、乙兩名業(yè)務員10個月的銷售額(單位:萬元)如下:甲7.29.69.67.89.346.58.59.99.6乙5.89.79.76.89.96.98.26.78.69.7根據上面的數據,將下表補充完整:4.0≤x≤4.95.0≤x≤5.96.0≤x≤6.97.0≤x≤7.98.0≤x≤8.99.0≤x≤10.0甲101215乙_______________________________(說明:月銷售額在8.0萬元及以上可以獲得獎金,7.0~7.9萬元為良好,6.0~6.9萬元為合格,6.0萬元以下為不合格)兩組樣本數據的平均數、中位數、眾數如表所示:結論:人員平均數(萬元)中位數(萬元)眾數(萬元)甲8.28.99.6乙8.28.49.7(1)估計乙業(yè)務員能獲得獎金的月份有______個;(2)可以推斷出_____業(yè)務員的銷售業(yè)績好,理由為_______.(至少從兩個不同的角度說明推斷的合理性)23.(12分)先化簡,再求值:,其中m=2.24.如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內為原始森林保護區(qū),在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護區(qū),為什么?(參考數據:≈1.732)(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:大于0而小于1的數用科學計數法表示,10的指數是負整數,其絕對值等于第一個不是0的數字前所有0的個數.考點:用科學計數法計數2、A【解析】

直接利用在A,B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h,利用時間差值得出等式即可.【詳解】解:設原來的平均車速為xkm/h,則根據題意可列方程為:﹣=1.故選A.【點睛】本題主要考查了由實際問題抽象出分式方程,根據題意得出正確等量關系是解題的關鍵.3、A【解析】

利用直接開平方法解方程.【詳解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故選A.【點睛】本題考查了解一元二次方程-直接開平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接開平方的方法解一元二次方程.4、A【解析】

由圖象的點的坐標,根據待定系數法求得解析式即可判定.【詳解】由圖象可知:拋物線y1的頂點為(-2,-2),與y軸的交點為(0,1),根據待定系數法求得y1=(x+2)2-2;拋物線y2的頂點為(0,-1),與x軸的一個交點為(1,0),根據待定系數法求得y2=x2-1;拋物線y3的頂點為(1,1),與y軸的交點為(0,2),根據待定系數法求得y3=(x-1)2+1;拋物線y4的頂點為(1,-3),與y軸的交點為(0,-1),根據待定系數法求得y4=2(x-1)2-3;綜上,解析式中的二次項系數一定小于1的是y1故選A.【點睛】本題考查了二次函數的圖象,二次函數的性質以及待定系數法求二次函數的解析式,根據點的坐標求得解析式是解題的關鍵.5、D【解析】

利用拋物線開口方向得到a<0,再由拋物線的對稱軸方程得到b=-2a,則3a+b=a,于是可對①進行判斷;利用2≤c≤3和c=-3a可對②進行判斷;利用二次函數的性質可對③進行判斷;根據拋物線y=ax2+bx+c與直線y=n-1有兩個交點可對④進行判斷.【詳解】∵拋物線開口向下,∴a<0,而拋物線的對稱軸為直線x=-b2a∴3a+b=3a-2a=a<0,所以①正確;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23∵拋物線的頂點坐標(1,n),∴x=1時,二次函數值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正確;∵拋物線的頂點坐標(1,n),∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,∴關于x的方程ax2+bx+c=n-1有兩個不相等的實數根,所以④正確.故選D.【點睛】本題考查了二次函數圖象與系數的關系:二次項系數a決定拋物線的開口方向和大?。攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時,對稱軸在y軸左;當a與b異號時,對稱軸在y軸右.常數項c決定拋物線與y軸交點:拋物線與y軸交于(0,c).拋物線與x軸交點個數由判別式確定:△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.6、A【解析】試題分析:從上邊看立體圖形得到俯視圖即可得右側立體圖形的俯視圖是,故選A.考點:簡單組合體的三視圖.7、C【解析】分析:將三個小區(qū)分別記為A、B、C,列舉出所有情況即可,看所求的情況占總情況的多少即可.詳解:將三個小區(qū)分別記為A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9種等可能結果,其中兩個組恰好抽到同一個小區(qū)的結果有3種,所以兩個組恰好抽到同一個小區(qū)的概率為.故選:C.點睛:此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.8、C【解析】

根據已知條件得到4<a-2<9,由此求得a的取值范圍,易得符合條件的選項.【詳解】解:∵2<<3,∴4<a-2<9,∴6<a<1.又a-2≥0,即a≥2.∴a的取值范圍是6<a<1.觀察選項,只有選項C符合題意.故選C.【點睛】考查了估算無理數的大小,估算無理數大小要用夾逼法.9、A【解析】

當點F在MD上運動時,0≤x<2;當點F在DA上運動時,2<x≤4.再按相關圖形面積公式列出表達式即可.【詳解】解:當點F在MD上運動時,0≤x<2,則:y=S梯形ECDG-S△EFC-S△GDF=,當點F在DA上運動時,2<x≤4,則:y=,綜上,只有A選項圖形符合題意,故選擇A.【點睛】本題考查了動點問題的函數圖像,抓住動點運動的特點是解題關鍵.10、D【解析】

根據積的乘方、合并同類項、同底數冪的除法以及冪的乘方進行計算即可.【詳解】A、(2a)3=8a3,故本選項錯誤;B、a3+a2不能合并,故本選項錯誤;C、a8÷a4=a4,故本選項錯誤;D、(a2)3=a6,故本選項正確;故選D.【點睛】本題考查了積的乘方、合并同類項、同底數冪的除法以及冪的乘方,掌握運算法則是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、57°.【解析】

根據平行線的性質和三角形外角的性質即可求解.【詳解】由平行線性質及外角定理,可得∠2=∠1+30°=27°+30°=57°.【點睛】本題考查平行線的性質及三角形外角的性質.12、.【解析】

圓錐的底面半徑為40cm,則底面圓的周長是80πcm,圓錐的底面周長等于側面展開圖的扇形弧長,即側面展開圖的扇形弧長是80πcm,母線長為90cm即側面展開圖的扇形的半徑長是90cm.根據弧長公式即可計算.【詳解】根據弧長的公式l=得到:

80π=,

解得n=160度.

側面展開圖的圓心角為160度.故答案為160°.13、﹣1<r<.【解析】

首先根據題意求得對角線AC的長,設圓A的半徑為R,根據點B在圓A外,得出0<R<1,則-1<-R<0,再根據圓A與圓C外切可得R+r=,利用不等式的性質即可求出r的取值范圍.【詳解】∵正方形ABCD中,AB=1,

∴AC=,

設圓A的半徑為R,

∵點B在圓A外,

∴0<R<1,

∴-1<-R<0,

∴-1<-R<.

∵以A、C為圓心的兩圓外切,

∴兩圓的半徑的和為,

∴R+r=,r=-R,

∴-1<r<.

故答案為:-1<r<.【點睛】本題考查了圓與圓的位置關系,點與圓的位置關系,正方形的性質,勾股定理,不等式的性質.掌握位置關系與數量之間的關系是解題的關鍵.14、2【解析】根據分式方程的解法,先去分母化為整式方程為2(x+1)=3x,解得x=2,檢驗可知x=2是原分式方程的解.故答案為2.15、.【解析】

股票一次跌停就跌到原來價格的90%,再從90%的基礎上漲到原來的價格,且漲幅只能≤10%,設這兩天此股票股價的平均增長率為x,每天相對于前一天就上漲到1+x,由此列出方程解答即可.【詳解】設這兩天此股票股價的平均增長率為x,由題意得(1﹣10%)(1+x)2=1.故答案為:(1﹣10%)(1+x)2=1.【點睛】本題主要考查了由實際問題抽象出一元二次方程,關鍵是掌握平均變化率的方法,若設變化前的量為,變化后的量為,平均變化率為,則經過兩次變化后的數量關系為16、y=(x﹣1)2+【解析】

直接利用拋物線與坐標軸交點求法結合頂點坐標求法分別得出M、N點坐標,進而得出平移方向和距離,即可得出平移后解析式.【詳解】解:y=x2-x+3=(x-)2+,∴N點坐標為:(,),令x=0,則y=3,∴M點的坐標是(0,3).∵平移該拋物線,使點M平移后的對應點M′與點N重合,∴拋物線向下平移個單位長度,再向右平移個單位長度即可,∴平移后的解析式為:y=(x-1)2+.故答案是:y=(x-1)2+.【點睛】此題主要考查了拋物線與坐標軸交點求法以及二次函數的平移,正確得出平移方向和距離是解題關鍵.三、解答題(共8題,共72分)17、(Ⅰ)點P的坐標為(,1).(Ⅱ)(0<t<11).(Ⅲ)點P的坐標為(,1)或(,1).【解析】

(Ⅰ)根據題意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,可知△OB′P≌△OBP,△QC′P≌△QCP,易證得△OBP∽△PCQ,然后由相似三角形的對應邊成比例,即可求得答案.(Ⅲ)首先過點P作PE⊥OA于E,易證得△PC′E∽△C′QA,由勾股定理可求得C′Q的長,然后利用相似三角形的對應邊成比例與,即可求得t的值:【詳解】(Ⅰ)根據題意,∠OBP=90°,OB=1.在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).∴點P的坐標為(,1).(Ⅱ)∵△OB′P、△QC′P分別是由△OBP、△QCP折疊得到的,∴△OB′P≌△OBP,△QC′P≌△QCP.∴∠OPB′=∠OPB,∠QPC′=∠QPC.∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.由題意設BP=t,AQ=m,BC=11,AC=1,則PC=11-t,CQ=1-m.∴.∴(0<t<11).(Ⅲ)點P的坐標為(,1)或(,1).過點P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A.∴△PC′E∽△C′QA.∴.∵PC′=PC=11-t,PE=OB=1,AQ=m,C′Q=CQ=1-m,∴.∴.∵,即,∴,即.將代入,并化簡,得.解得:.∴點P的坐標為(,1)或(,1).18、(1)1;(3);(3)理由見解析,店家一次應賣45只,最低售價為16.5元,此時利潤最大.【解析】試題分析:(1)設一次購買x只,由于凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降低0.10元,而最低價為每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根據(1)得到x≤1,又一次銷售x(x>10)只,因此得到自變量x的取值范圍,然后根據已知條件可以得到y(tǒng)與x的函數關系式;(3)首先把函數變?yōu)閥=-0.1x2+9x試題解析:(1)設一次購買x只,則30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少買1只,才能以最低價購買;(3)當10<x≤1時,y=[30﹣0.1(x﹣10)﹣13]x=-0.1x綜上所述:;(3)y=-0.1x2+9x②當45<x≤1時,y隨x的增大而減小,即當賣的只數越多時,利潤變?。耶攛=46時,y1=303.4,當x=1時,y3=3.∴y1>y3.即出現(xiàn)了賣46只賺的錢比賣1只賺的錢多的現(xiàn)象.當x=45時,最低售價為30﹣0.1(45﹣10)=16.5(元),此時利潤最大.故店家一次應賣45只,最低售價為16.5元,此時利潤最大.考點:二次函數的應用;二次函數的最值;最值問題;分段函數;分類討論.19、(1)a=0.3,b=4;(2)99人;(3)【解析】分析:(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;(2)利用用樣本估計總體的知識求解即可求得答案;(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求得答案.詳解:(1)a=1-0.15-0.35-0.20=0.3;∵總人數為:3÷0.15=20(人),∴b=20×0.20=4(人);故答案為:0.3,4;補全統(tǒng)計圖得:(2)估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有:180×(0.35+0.20)=99(人);(3)畫樹狀圖得:∵共有12種等可能的結果,所選兩人正好都是甲班學生的有3種情況,∴所選兩人正好都是甲班學生的概率是:.點睛:此題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖的知識.用到的知識點為:概率=所求情況數與總情況數之比.20、(1),;(2)證明見解析.【解析】試題分析:(1)根據一元二次方程根與系數的關系列方程組求解即可.(2)要證方程都有兩個不相等的實數根,只要證明根的判別式大于0即可.試題解析:(1)設方程的另一根為x1,∵該方程的一個根為1,∴.解得.∴a的值為,該方程的另一根為.(2)∵,∴不論a取何實數,該方程都有兩個不相等的實數根.考點:1.一元二次方程根與系數的關系;2.一元二次方程根根的判別式;3.配方法的應用.21、(1)見解析;(2)6.【解析】

(1)由△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,可得∠PAB=∠PBD,∠BPD=∠PAC,從而即可證明;

(2)根據相似三角形對應邊成比例即可求出PC=PD=3,再由勾股定理即可求解.【詳解】證明:(1)∵△PCD是等腰直角三角形,∠DPC=90°,∠APB=135°,∴∠APC+∠BPD=45°,

又∠PAB+∠PBA=45°,∠PBA+∠PBD=4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論