![所需-氣動(dòng)空氣動(dòng)力學(xué)課件chapter_第1頁(yè)](http://file4.renrendoc.com/view/10c2f11996137e80f84fc04129e134f6/10c2f11996137e80f84fc04129e134f61.gif)
![所需-氣動(dòng)空氣動(dòng)力學(xué)課件chapter_第2頁(yè)](http://file4.renrendoc.com/view/10c2f11996137e80f84fc04129e134f6/10c2f11996137e80f84fc04129e134f62.gif)
![所需-氣動(dòng)空氣動(dòng)力學(xué)課件chapter_第3頁(yè)](http://file4.renrendoc.com/view/10c2f11996137e80f84fc04129e134f6/10c2f11996137e80f84fc04129e134f63.gif)
![所需-氣動(dòng)空氣動(dòng)力學(xué)課件chapter_第4頁(yè)](http://file4.renrendoc.com/view/10c2f11996137e80f84fc04129e134f6/10c2f11996137e80f84fc04129e134f64.gif)
![所需-氣動(dòng)空氣動(dòng)力學(xué)課件chapter_第5頁(yè)](http://file4.renrendoc.com/view/10c2f11996137e80f84fc04129e134f6/10c2f11996137e80f84fc04129e134f65.gif)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
完全氣體內(nèi)能和焓熱力學(xué)復(fù)習(xí)熱力學(xué)第一定律熵及熱力學(xué)第二定律等熵關(guān)系式壓縮性定義無(wú)粘可壓縮流動(dòng)的控制方程總條件的定義有激波的超音速流動(dòng)的定性了解第七章路線圖7.3.DEFINITIONOFCOMPRESSIBILITY(壓縮性定義)
Allrealsubstancesarecompressible
tosomegreaterorlesserextend. Whenyousqueezeorpressonthem,theirdensitywillchange.Thisisparticularlytrueofgases.(所有的真實(shí)物質(zhì)都是可壓縮的,當(dāng)我們壓擠它們時(shí),它們的密度會(huì)發(fā)生變化,對(duì)于氣體尤其是這樣.)Theamountbywhichasubstancecanbecompressedisgivenbyaspecificpropertyofthesubstancecalledthecompressibilty,definedbelow.物質(zhì)可被壓縮的大小程度稱為物質(zhì)的壓縮性.Considerasmallelementoffluidofvolume.Thepressureexertedonthesidesoftheelementisp.Ifthepressureisincreasedbyaninfinitesimalamountdp,thevolumewillchangebyanegativeamount.
Bydefinition,thecompressibilityisgivenby:
(7.33)as
(7.36)
Physically,thecompressibilityisafractionalchangeinvolumeofthefluidelementperunitchangeinpressure.(從物理上講,壓縮性就是每單位壓強(qiáng)變化引起的流體微元單位體積內(nèi)的體積變化)
Ifthetemperatureofthefluidelementisheldconstant,thenisidentifiedastheisothermalcompressibility(等溫壓縮性)
(7.34) Iftheprocesstakesplaceisentropically,then(等熵壓縮性)(7.35)
Ifthefluidisagas,wherecompressibilityislarge,thenforagivenpressurechangefromonepointtoanotherintheflow,Eq.(7.37)statesthat
canbelarge.(如果流體為氣體,則值大,對(duì)于一個(gè)給定壓強(qiáng)變化,方程.(7.37)指出,也會(huì)大.)
Thus,isnotconstant;theflowofagasisacompressibleflow. Theexceptionisthelow-speedflowofagas.Whereisthelimit?IftheMachnumber ,theflowshouldbeconsideredcompressible.(7.37)7.4
GOVERNINGEQUATIONSFORINVISCID,COMPRESSIBLEFLOW(無(wú)粘、可壓縮流控制方程) Forinviscid,pressibleflow,theprimarydependentvariablesarethepressurepandthevelocity.Hence,weneedonlytwobasicequations,namelythecontinuityandthemomentumequations.
對(duì)于無(wú)粘、不可壓縮流動(dòng),基本自變量是壓強(qiáng)p和速度。因此我們只需要兩個(gè)基本方程,即連續(xù)方程和動(dòng)量方程。Indeed,thebasicequationsarecombinedtoobtainLaplace’sequationandBernoulli’sequation,whicharetheprimarilytoolstheapplicationsdiscussedinChaps.3to6.NotethatbothandTareassumedtobeconstantthroughoutsuchinviscid,pressibleflows.連續(xù)方程與動(dòng)量方程相結(jié)合可以得到Laplace方程和Bernoulli方程,這是我們討論第三章至第六章內(nèi)容用到的基本工具.對(duì)于無(wú)粘不可壓縮流動(dòng),我們假定密度和溫度保持不變.Basically,pressibleflowsobeypurelymechanicallawsanddonotneedthermodynamicconsiderations. Incontrast,forcompressibleflow,isvariableandesanunknown.Henceweneedanadditionalequation–theenergyequation–whichinturnintroducesinternalenergyeasanunknown.對(duì)于可壓縮流,相反的是是一個(gè)變量,并且是一個(gè)未知數(shù).因此,我們需要一個(gè)附加方程-能量方程-進(jìn)而引入未知數(shù)內(nèi)能e。Internalenergyeisrelatedtotemperature,thenTalsoesanimportantvariable. Therefore,the5primarydependentvariablesare:Tosolveforthesefivevariables,weneedfivegoverningequations復(fù)習(xí)第二章知識(shí):
Continuity(連續(xù)方程) Physicalprinciple:masscanbeneithercreatednordestroyed
Netmassflowoutof timerateofdecreaseof controlvolume = massinsidecontrolvolumeV throughsurfaceS
通過控制體表面S流出控制體的凈質(zhì)量流量=控制體內(nèi)的質(zhì)量減少率
(7.39)orintheformofapartialdifferentialequation
(偏微分方程)
(7.40)
whereisthedivergenceofthevectorfieldinCartesiancoordinates(在指角坐標(biāo)系下)2.Momentum(動(dòng)量方程)
Physicalprinciple:
Force=timerateofchangeofmomentum
(7.41)wherearethebodyforces,suchasgravity,orelectromagneticforcesIntermsofsubstantialderivative:(7.42a)theyandzdirectionsofthevectorcanbeeasilyfoundbysubstitution
(7.42b)(7.42c)
寫成矢量形式:whereisthesubstantialderivativewhichcanbewritteninCartesiancoordinatesas:
3.Energy Physicalprinciple: Energycanbeneithercreatednordestroyed;itcanonlychangeinform(7.43)Equationofenergycanalsobewrittenas:
Assumethattheflowisadiabaticandthatbodyforcesarenegligible.Forsuchaflow
(7.44)(7.45)4.Equationofstateforaperfectgas:5.Internalenergyforacaloricallyperfectgas:Wehavenow5equationsfor5unknowns.7.5DEFINITIONOFTOTALCONDITIONS
(總條件的定義)
Considerafluidelementpassingthroughagivenpointinaflowwherethelocalpressure,temperature,density,Machnumber,andvelocity(localconditions)
are
and,
respectively.
假設(shè)流體微團(tuán)通過一個(gè)給定點(diǎn),對(duì)應(yīng)的當(dāng)?shù)貕簭?qiáng)、溫度、密度、馬赫數(shù)、速度分別為。
Here,arestaticquantities,i.e.,staticpressure,statictemperature,staticdensity,respectively.
這里,是分別靜變量(靜參數(shù)),即靜壓、靜溫、靜密度。Nowimaginethatyougrabholdofthefluidelementandadiabaticallyslowitdowntozerovelocity.Clearly,youwouldexpect(correctly)thatthevaluesofwouldchangeastheelementisbroughttorest.Inparticular,thevalueofthetemperatureofthefluidelementafterithasbeenbroughttorestadiabaticallyisdefinedasthetotaltemperature,denotedby.特別地,假想流體微團(tuán)被絕熱地減速為靜止所對(duì)應(yīng)的溫度,定義此時(shí)流體微團(tuán)對(duì)應(yīng)的溫度為總溫.
Thecorrespondingvalueofenthalpyisdefinedastotalenthalpyh0,whereh0=cpT0
foracaloricallyperfectgas.
*如何確定總溫?
Theenergyequation,Eq.(7.44),providessomeimportantinformationabouttotalenthalpyandhencetotaltemperature.
(由能量方程可以的到總焓、因而總溫的重要信息。)Assumethattheflowisadiabaticandthatbodyforcesarenegligible,thentheequationofenergycanbewrittenas:
(7.45)注意(7.45)式的前提條件:無(wú)粘、絕熱、忽略體積力.ExpandingbyusingthefollowingvectoridentityAndnotingthatSubstitutingthecontinuityequation(7.47)(7.48)
(7.46)(7.45)(7.48)(7.45)+(7.48),note:(7.51)
Iftheflowissteady,(如果流動(dòng)是定常的)
Fromthedefinitionofthesubstantialderivative Thenthetimerateofchangeofh+V2/2followingamovingfluidelementiszero:(7.53)RecallthattheassumptionswhichledtoEq.(7.53)arethattheflowissteady,adiabatic,andinviscid.(7.52)Sinceh0isdefinedasthatenthalpywhichwouldexistatapointifthefluidelementwerebroughttorestadiabatically,whereV=0andhenceh=h0,thenthevalueoftheconstantish0.
因?yàn)槲覀兌x總焓h0為流體微元被絕熱地減速為靜止時(shí)對(duì)應(yīng)的焓值,因此有能量方程我們可以得到總焓的值,即上式(7.53)中的常數(shù)。因此有:(7.54)Equation(7.54)isimportant;itstatesthatatanypointinaflow,thetotalenthalpyisgivenbythesumofthestaticenthalpyplusthekineticenergy,allperunitofmass.方程(7.54)很重要,它表明在流動(dòng)中任一點(diǎn),總焓由每單位體積的靜焓和動(dòng)能之和組成。
有了總焓的定義,能量方程可以用總焓來(lái)表示:對(duì)于定常、絕熱、無(wú)粘流動(dòng),方程(7.52)可以寫成: ori.e.thetotalenthalpyisconstantalongastreamline.
即總焓沿流線為常數(shù)。
Ifallthestreamlinesofthefloworiginatefromacommonuniformfreestream(astheusuallythecase),thentheh0isthesameforeachline.
如果像通常的情況那樣,所有的流線都來(lái)自均勻自由來(lái)流,那么h0在不同流線也是相等的。
h0=const,throughouttheentireflow,andh0isequaltoitsfreestreamvalue.總焓在整個(gè)流場(chǎng)中為常數(shù),等于自由來(lái)流對(duì)應(yīng)的總焓。(7.55)Foracaloricallyperfectgas,h0=cpT0
.Thus,theaboveresultsalsostatethatthetotaltemperature
isconstantthroughoutthesteady,inviscid,adiabaticflowofacaloricallyperfectgas;i.e.對(duì)于量熱完全氣體,h0=cpT0
。因此,上面的結(jié)果也表明了對(duì)于定常、無(wú)粘、絕熱的量熱完全氣體,總溫保持不變,即(7.56)Keepinmindthattheabovediscussionmarbledtwotrainsofthought:Ontheonehand,wedealtwiththegeneralconceptofanadiabaticflowfield[whichledtoEqs.(7.51)to(7.53)],andontheotherhand,wedealtwiththedefinitionoftotalenthalpy[whichledtoEq.(7.54)].
要牢記在心的是:上面的討論是沿著兩條思路進(jìn)行的,一方面,我們討論了絕熱流場(chǎng)的一般概念[導(dǎo)出了能量方程(7.51)至(7.53)];另一方面,我們討論了總焓的定義[給出了(7.54)式]。(7.51)(7.52)(7.53)(7.54)
總壓與總密度的定義:
回到本節(jié)的開頭,我們考慮流體微團(tuán)通過一個(gè)給定點(diǎn),對(duì)應(yīng)的當(dāng)?shù)貕簭?qiáng)、溫度、密度、馬赫數(shù)、速度分別為。
Onceagain,imaginethatyougrabholdofthefluidelementandslowitdowntozerovelocity,butthistime,letusslowitdownbothadiabaticallyandreversibly.Thatis,letusslowthefluidelementdowntozerovelocityisentropically.Whenthefluidelementisbroughttorestisentropically,theresultingpressureanddensityaredefinedasthetotalpressurep0
andtotaldensity.
定義:當(dāng)流體微元被等熵地減速至靜止時(shí)對(duì)應(yīng)的壓強(qiáng)和密度被定義為其總壓和總密度。Sinceanisentropicprocessisalsoadiabatic,thedefinitionoftotaltemperatureremainsunchanged.Asbefore,keepinmindthatwedonothavetoactuallybringtheflowtorestinreallifeinordertotalkabouttotalpressureandtotaldensity;rather,thearedefinedquantitiesthatwouldexistatapointinaflowif(inourimagination)thefluidelementpassingthroughthatpointwerebroughttorestisentropically.Therefore,atagivenpointinaflow,wherethestaticpressureandstaticdensityarepandρ,respectively,wecanalsoassignavalueoftotalpressurep0,andtotaldensityρ0definedasabove.6.SUMMARY
TotaltemperatureT0andtotalenthalpyh0aredefinedasthepropertiesthatwouldexistiftheflowisslowedtozerovelocityadiabatically. Totalpressurep0
andtotaldensity
ρ0aredefinedasthepropertiesthatwouldexistiftheflowisslowedtozerovelocityisentropically. Ifthegeneralflowfieldisadiabatic,h0isconstantthroughouttheflow.
Ifthegeneralflowfieldisisentropic,p0andρ0areconstantthroughouttheflow.7.6SomeAspectsofSupersonicFlow:ShockWaves
超音速流的一些特征:激波51頁(yè)圖1.30Anessentialingredientofasupersonicflowisthecalculationoftheshapeandstrengthofshockwaves.Thisisthemainthrustofchaps.8and9.
超音速流動(dòng)研究的一個(gè)重要內(nèi)容就是計(jì)算激波的形狀和強(qiáng)度。這是第8章和第9章的主題。Ashockwaveisanextremelythinregion,typicallyontheorderof10-5cm,acrosswhichtheflowpropertiescanchangedrastically.激波是一個(gè)極其薄的區(qū)域,厚度大約只有10-5cm的量級(jí),通過激波流動(dòng)特性發(fā)生劇烈變化。7.7Summary(小結(jié)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度養(yǎng)豬場(chǎng)租賃合同范本(科技版)
- 2025年度高端酒店管理服務(wù)合同-@-3
- 2025年企業(yè)員工餐食策劃供應(yīng)合同協(xié)議
- 2025全年托管服務(wù)與承包合同
- 獨(dú)家代理合同書
- 2025年公共場(chǎng)所隔離欄安裝合同
- 知識(shí)產(chǎn)權(quán)許可與轉(zhuǎn)讓合同
- 建筑材料供應(yīng)合同-建筑采購(gòu)合同
- 度個(gè)人住宅抵押貸款合同文本
- 2025年輕工來(lái)料加工策劃合同范本
- 5000只淮山羊和波爾山羊雜交良種養(yǎng)殖場(chǎng)建設(shè)項(xiàng)目可行性研究報(bào)告
- GB/T 5534-2008動(dòng)植物油脂皂化值的測(cè)定
- GB/T 12771-2019流體輸送用不銹鋼焊接鋼管
- 測(cè)量管理體系內(nèi)審檢查表
- 工程驗(yàn)收及移交管理方案
- 心臟手術(shù)麻醉的一般流程課件
- 圖片編輯概述課件
- 2023年岳陽(yáng)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試筆試題庫(kù)及答案解析
- 信號(hào)與系統(tǒng)復(fù)習(xí)題及答案
- 北師大版八年級(jí)數(shù)學(xué)上冊(cè)《認(rèn)識(shí)無(wú)理數(shù)(第2課時(shí))》參考課件2
- 中級(jí)建構(gòu)筑物消防員理論綜合模擬題01原題
評(píng)論
0/150
提交評(píng)論