2023屆江西省宜春市上高三最后一模數(shù)學試題含解析_第1頁
2023屆江西省宜春市上高三最后一模數(shù)學試題含解析_第2頁
2023屆江西省宜春市上高三最后一模數(shù)學試題含解析_第3頁
2023屆江西省宜春市上高三最后一模數(shù)學試題含解析_第4頁
2023屆江西省宜春市上高三最后一模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數(shù)m的最小值是()A. B.3 C. D.2.已知定義在上函數(shù)的圖象關于原點對稱,且,若,則()A.0 B.1 C.673 D.6743.已知三棱錐且平面,其外接球體積為()A. B. C. D.4.已知,,若,則向量在向量方向的投影為()A. B. C. D.5.已知、分別為雙曲線:(,)的左、右焦點,過的直線交于、兩點,為坐標原點,若,,則的離心率為()A.2 B. C. D.6.在中,為中點,且,若,則()A. B. C. D.7.已知集合的所有三個元素的子集記為.記為集合中的最大元素,則()A. B. C. D.8.已知中內角所對應的邊依次為,若,則的面積為()A. B. C. D.9.方程的實數(shù)根叫作函數(shù)的“新駐點”,如果函數(shù)的“新駐點”為,那么滿足()A. B. C. D.10.已知,,則()A. B. C.3 D.411.集合中含有的元素個數(shù)為()A.4 B.6 C.8 D.1212.已知函數(shù)的圖象如圖所示,則可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,項的系數(shù)是__________(用數(shù)字作答).14.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序將每個螺栓固定緊,但不能連續(xù)固定相鄰的2個螺栓.則不同的固定螺栓方式的種數(shù)是________.15.已知數(shù)列滿足,且恒成立,則的值為____________.16.直線是圓:與圓:的公切線,并且分別與軸正半軸,軸正半軸相交于,兩點,則的面積為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調遞增區(qū)間;(2)若銳角中角所對的邊分別為,且,求的取值范圍.18.(12分)的內角的對邊分別為,已知.(1)求的大小;(2)若,求面積的最大值.19.(12分)據(jù)《人民網(wǎng)》報道,美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動主導了地球變綠.據(jù)統(tǒng)計,中國新增綠化面積的來自于植樹造林,下表是中國十個地區(qū)在去年植樹造林的相關數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復、人工更新的面積之和)單位:公頃地區(qū)造林總面積造林方式人工造林飛播造林新封山育林退化林修復人工更新內蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請根據(jù)上述數(shù)據(jù)分別寫出在這十個地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);(2)在這十個地區(qū)中,任選一個地區(qū),求該地區(qū)新封山育林面積占造林總面積的比值超過的概率;(3)在這十個地區(qū)中,從退化林修復面積超過一萬公頃的地區(qū)中,任選兩個地區(qū),記X為這兩個地區(qū)中退化林修復面積超過六萬公頃的地區(qū)的個數(shù),求X的分布列及數(shù)學期望.20.(12分)已知橢圓:的長半軸長為,點(為橢圓的離心率)在橢圓上.(1)求橢圓的標準方程;(2)如圖,為直線上任一點,過點橢圓上點處的切線為,,切點分別,,直線與直線,分別交于,兩點,點,的縱坐標分別為,,求的值.21.(12分)已知函數(shù),.(1)求函數(shù)的極值;(2)當時,求證:.22.(10分)在直角坐標系中,已知點,的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)設曲線與曲線相交于,兩點,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

設點,由,得關于的方程.由題意,該方程有解,則,求出正實數(shù)m的取值范圍,即求正實數(shù)m的最小值.【詳解】由題意,設點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內兩點間距離公式,屬于中檔題.2、B【解析】

由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個周期內的和是0,利用函數(shù)周期性對所求式子進行化簡可得.【詳解】因為為奇函數(shù),故;因為,故,可知函數(shù)的周期為3;在中,令,故,故函數(shù)在一個周期內的函數(shù)值和為0,故.故選:B.【點睛】本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數(shù)值的自變量轉化到已知解析式的函數(shù)定義域內求解.3、A【解析】

由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設,則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.4、B【解析】

由,,,再由向量在向量方向的投影為化簡運算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點睛】本題考查向量投影的幾何意義,屬于基礎題5、D【解析】

作出圖象,取AB中點E,連接EF2,設F1A=x,根據(jù)雙曲線定義可得x=2a,再由勾股定理可得到c2=7a2,進而得到e的值【詳解】解:取AB中點E,連接EF2,則由已知可得BF1⊥EF2,F(xiàn)1A=AE=EB,設F1A=x,則由雙曲線定義可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,則EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,則e故選:D.【點睛】本題考查雙曲線定義的應用,考查離心率的求法,數(shù)形結合思想,屬于中檔題.對于圓錐曲線中求離心率的問題,關鍵是列出含有中兩個量的方程,有時還要結合橢圓、雙曲線的定義對方程進行整理,從而求出離心率.6、B【解析】

選取向量,為基底,由向量線性運算,求出,即可求得結果.【詳解】,,,,,.故選:B.【點睛】本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎題.7、B【解析】

分類討論,分別求出最大元素為3,4,5,6的三個元素子集的個數(shù),即可得解.【詳解】集合含有個元素的子集共有,所以.在集合中:最大元素為的集合有個;最大元素為的集合有;最大元素為的集合有;最大元素為的集合有;所以.故選:.【點睛】此題考查集合相關的新定義問題,其本質在于弄清計數(shù)原理,分類討論,分別求解.8、A【解析】

由余弦定理可得,結合可得a,b,再利用面積公式計算即可.【詳解】由余弦定理,得,由,解得,所以,.故選:A.【點睛】本題考查利用余弦定理解三角形,考查學生的基本計算能力,是一道容易題.9、D【解析】

由題設中所給的定義,方程的實數(shù)根叫做函數(shù)的“新駐點”,根據(jù)零點存在定理即可求出的大致范圍【詳解】解:由題意方程的實數(shù)根叫做函數(shù)的“新駐點”,對于函數(shù),由于,,設,該函數(shù)在為增函數(shù),,,在上有零點,故函數(shù)的“新駐點”為,那么故選:.【點睛】本題是一個新定義的題,理解定義,分別建立方程解出存在范圍是解題的關鍵,本題考查了推理判斷的能力,屬于基礎題..10、A【解析】

根據(jù)復數(shù)相等的特征,求出和,再利用復數(shù)的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數(shù)的特征和復數(shù)的模,屬于基礎題.11、B【解析】解:因為集合中的元素表示的是被12整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B12、A【解析】

根據(jù)圖象可知,函數(shù)為奇函數(shù),以及函數(shù)在上單調遞增,且有一個零點,即可對選項逐個驗證即可得出.【詳解】首先對4個選項進行奇偶性判斷,可知,為偶函數(shù),不符合題意,排除B;其次,在剩下的3個選項,對其在上的零點個數(shù)進行判斷,在上無零點,不符合題意,排除D;然后,對剩下的2個選項,進行單調性判斷,在上單調遞減,不符合題意,排除C.故選:A.【點睛】本題主要考查圖象的識別和函數(shù)性質的判斷,意在考查學生的直觀想象能力和邏輯推理能力,屬于容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據(jù)條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數(shù).可由某項得出參數(shù)項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數(shù).14、60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數(shù)原理,可以求得共有10種方法,利用分步乘法計數(shù)原理,求得總共有種方法.詳解:根據(jù)題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘?shù)臅r候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數(shù)原理和分步乘法計數(shù)原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.15、【解析】

易得,所以是等差數(shù)列,再利用等差數(shù)列的通項公式計算即可.【詳解】由已知,,因,所以,所以數(shù)列是以為首項,3為公差的等差數(shù)列,故,所以.故答案為:【點睛】本題考查由遞推數(shù)列求數(shù)列中的某項,考查學生等價轉化的能力,是一道容易題.16、【解析】

根據(jù)題意畫出圖形,設,利用三角形相似求得的值,代入三角形的面積公式,即可求解.【詳解】如圖所示,設,由與相似,可得,解得,再由與相似,可得,解得,由三角形的面積公式,可得的面積為.故答案為:.【點睛】本題主要考查了直線與圓的位置關系的應用,以及三角形相似的應用,著重考查了數(shù)形結合思想,以及推理與運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),函數(shù)的單調遞增區(qū)間為;(2).【解析】

(1)運用降冪公式和輔助角公式,把函數(shù)的解析式化為正弦型函數(shù)解析式形式,根據(jù)已知,可以求出的值,再結合正弦型函數(shù)的性質求出函數(shù)的單調遞增區(qū)間;(2)由(1)結合已知,可以求出角的值,通過正弦定理把問題的取值范圍轉化為兩邊對角的正弦值的比值的取值范圍,結合已知是銳角三角形,三角形內角和定理,最后求出的取值范圍.【詳解】解:(1)由已知,所以因此令得因此函數(shù)的單調遞增區(qū)間為(2)由已知,∴由得,因此所以因為為銳角三角形,所以,解得因此,那么【點睛】本題考查了降冪公式、輔助角公式,考查了正弦定理,考查了正弦型三角函數(shù)的單調性,考查了數(shù)學運算能力.18、(1);(2).【解析】

(1)利用正弦定理將邊化角,結合誘導公式可化簡邊角關系式,求得,根據(jù)可求得結果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結果.【詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(當且僅當時取等號)即三角形面積的最大值為:【點睛】本題考查解三角形的相關知識,涉及到正弦定理化簡邊角關系式、余弦定理解三角形、三角形面積公式應用、基本不等式求積的最大值、誘導公式的應用等知識,屬于常考題型.19、(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海??;(2);(3)分布列見詳解,數(shù)學期望為【解析】

(1)通過數(shù)據(jù)的觀察以及計算人工造林面積與造林總面積比值,可得結果.(2)通過數(shù)據(jù)的觀察以及計算新封山育林面積與造林總面積比值,得出比值超過的地區(qū)個數(shù),然后可得結果.(3)計算退化林修復面積超過一萬公頃的地區(qū)中選兩個地區(qū)總數(shù),退化林修復面積超過六萬公頃的地區(qū)的個數(shù)為,列出所有取值并計算相應概率,然后可得結果.【詳解】(1)人工造林面積與總面積比最大的地區(qū)為甘肅省,人工造林面積與總面積比最小的地區(qū)為青海省.(2)記事件A:在這十個地區(qū)中,任選一個地區(qū),該地區(qū)新封山育林面積占總面積的比值超過根據(jù)數(shù)據(jù)可知:青海地區(qū)人工造林面積占總面積比超過,則(3)退化林修復面積超過一萬公頃有6個地區(qū):內蒙、河北、河南、重慶、陜西、新疆,其中退化林修復面積超過六萬公頃有3個地區(qū):內蒙、河北、重慶,所以X的取值為0,1,2所以,,隨機變量X的分布列如下:【點睛】本題考查數(shù)據(jù)的處理以及離散型隨機變量的分布列與數(shù)學期望,審清題意,細心計算,屬基礎題.20、(1);(2).【解析】

(1)因為點在橢圓上,所以,然后,利用,,得出,進而求解即可(2)設點的坐標為,直線的方程為,直線的方程為,分別聯(lián)立方程:和,利用韋達定理,再利用,,即可求出的值【詳解】(1)由橢圓的長半軸長為,得.因為點在橢圓上,所以.又因為,,所以,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論