版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
山西省朔州市懷仁縣第七中學2021年高三數(shù)學文聯(lián)考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.已知是虛數(shù)單位,則復數(shù)的共軛復數(shù)是A、1-B、-1+C、1+D、-1-參考答案:C∴復數(shù)的共軛復數(shù)是說明:⑴形如Z=a+bi(其中)稱為復數(shù),a叫做復數(shù)的實部,b叫做虛部(注意a,b都是實數(shù))為z的共軛復數(shù).⑵兩個復數(shù)相等的定義:.⑶復數(shù)集是無序集,不能建立大小順序。兩個復數(shù),如果不全是實數(shù),就不能比較大小.①若為復數(shù),則若,則.(×)若,則.(√)②特別地:⑷2.“a<﹣1”是“直線ax+y﹣3=0的傾斜角大于”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件參考答案:A【考點】必要條件、充分條件與充要條件的判斷.【分析】設(shè)直線ax+y﹣3=0的傾斜角為θ,tanθ=﹣a,由直線ax+y﹣3=0的傾斜角大于,可得﹣a>1或﹣a<0,解得a范圍即可判斷出結(jié)論.【解答】解:設(shè)直線ax+y﹣3=0的傾斜角為θ,tanθ=﹣a,∵直線ax+y﹣3=0的傾斜角大于,∴﹣a>1或﹣a<0,解得a<﹣1,或a>0.∴“a<﹣1”是“直線ax+y﹣3=0的傾斜角大于”的充分不必要條件.故選:A.3.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布N(0,32),從中隨機取一件,其長度誤差落在(3,6)內(nèi)的概率為()附:若隨機變量ξ服從正態(tài)分布N(μ,σ2),則P(μ﹣σ<ξ<μ+σ)=0.6826,P(μ﹣2σ<ξ<μ+2σ)=0.9544.A.0.2718 B.0.0456 C.0.3174 D.0.1359參考答案:D【考點】CP:正態(tài)分布曲線的特點及曲線所表示的意義.【分析】利用正態(tài)分布的對稱性計算概率.【解答】解:∵設(shè)零件誤差為ξ,則ξ~N(0,32),∴P(﹣6<ξ<6)=0.9544,P(﹣3<ξ<3)=0.6826,∴P(3<ξ<6)=(0.9544﹣0.6826)=0.1359.故選:D.4.右面莖葉圖表示的是甲、乙兩人在5次綜合測評中的成績,其中一個數(shù)字被污損,則甲的平均成績超過乙的平均成績的概率為(
)A.
B.
C.
D.參考答案:C略5.已知函數(shù)f(x)的圖象是連續(xù)不斷的,給出x,f(x)對應(yīng)值如表:x123456f(x)23.521.4﹣7.811.5﹣5.7﹣12.4函數(shù)f(x)在區(qū)間[1,6]上的零點至少有()A.2個 B.3個 C.4個 D.5個參考答案:B【考點】函數(shù)零點的判定定理.【分析】利用零點判定定理,直接找出幾個即可.【解答】解:由圖可知,f(2)>0,f(3)<0,f(4)>0,f(5)<0,由零點存在定理知在區(qū)間(2,3)上至少有一個零點,同理可以判斷出在區(qū)間(3,4)、(4,5)上各至少有一個零點,所以在區(qū)間[1,6]上的零點至少有三個.故選:B.6.cos300°等于()A.﹣ B. C.﹣ D.參考答案:D考點: 運用誘導公式化簡求值.專題: 三角函數(shù)的求值.分析: 利用誘導公式cos300°=cos(360°﹣60°)=cos60°即可求得答案.解答: 解:cos300°=cos(360°﹣60°)=cos60°=,故選:D.點評: 本題考查誘導公式的應(yīng)用,屬于基礎(chǔ)題.7.已知集合,,則()A.
B.
C.
D.參考答案:B【知識點】集合的運算【試題解析】
所以。8.已知向量a、b的夾角為θ,|a+b|=2,則θ的取值范圍是(
)A.
B.
C.D.參考答案:C9.若,則的定義域為
(
)A.
B.
C.
D.
參考答案:
A10.復數(shù)滿足,其中為虛數(shù)單位,則在復平面上復數(shù)對應(yīng)的點位于(
)A.第一象限
B.第二象限
C.第三象限
D.第四象限
參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11.函數(shù)在x=1處連續(xù),則實數(shù)m=(A);
(B);
(C);
(D)參考答案:D12.是偶函數(shù),且在(0,+∞)上是增函數(shù),若[,1]時,不等式恒成立,則實數(shù)的取值范圍是
.參考答案:[-2,0]13.已知點的坐標滿足,設(shè),則(為坐標原點)的最大值為
********
.參考答案:【知識點】簡單線性規(guī)劃的應(yīng)用。E5
【答案解析】2
解析:滿足的可行域如圖所示,又∵,∵,,∴,由圖可知,平面區(qū)域內(nèi)x值最大的點為(2,3),故答案為:2【思路點撥】先畫出滿足的可行域,再根據(jù)平面向量的運算性質(zhì),對進行化簡,結(jié)合可行域,即可得到最終的結(jié)果.14.根據(jù)《中華人民共和國道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100ml(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100ml(含80)以上時,屬醉酒駕車.據(jù)《法制晚報》報道,2012年2月1日至3月1日,全國查處酒后駕車和醉酒駕車共28800人,如下圖是對這28800人酒后駕車血液中酒精含量進行檢測所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為
.參考答案:4320人15.實數(shù)滿足,則的最大值為
.參考答案:略16.在五個數(shù)字1,2,3,4,5中,若隨機取出三個數(shù)字,則剩下兩個數(shù)字至少有一個是偶數(shù)的概率為.(結(jié)果用數(shù)值表示)參考答案:0.7【考點】CC:列舉法計算基本事件數(shù)及事件發(fā)生的概率.【分析】基本事件總數(shù)為n==10,剩下兩個數(shù)字至少有一個是偶數(shù)的對立事件是剩下兩個數(shù)字都是奇數(shù),由此利用對立事件概率計算公式能求出剩下兩個數(shù)字至少有一個是偶數(shù)的概率.【解答】解:在五個數(shù)字1,2,3,4,5中,隨機取出三個數(shù)字,基本事件總數(shù)為n==10,剩下兩個數(shù)字至少有一個是偶數(shù)的對立事件是剩下兩個數(shù)字都是奇數(shù),∴剩下兩個數(shù)字至少有一個是偶數(shù)的概率為:p=1﹣=0.7.故答案為:0.7.17.如圖,△ABC中,DE∥BC,DF∥AC,AE:AC=3:5,DE=6,則BF=_______參考答案:4三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(13分)如表,將數(shù)字1,2,3,…,2n(n≥3)全部填入一個2行n列的表格中,每格填一個數(shù)字.第一行填入的數(shù)字依次為a1,a2,…,an,第二行填入的數(shù)字依次為b1,b2,…,bn.記=|a1﹣b1|+|a2﹣b2|+…+|an﹣bn|.a(chǎn)1a2…anb1b2…bn
(Ⅰ)當n=3時,若a1=1,a2=3,a3=5,寫出S3的所有可能的取值;(Ⅱ)給定正整數(shù)n.試給出a1,a2,…,an的一組取值,使得無論b1,b2,…,bn填寫的順序如何,Sn都只有一個取值,并求出此時Sn的值;(Ⅲ)求證:對于給定的n以及滿足條件的所有填法,Sn的所有取值的奇偶性相同.參考答案:【考點】數(shù)列與函數(shù)的綜合.【分析】(Ⅰ)根據(jù)新定義計算即可,(Ⅱ)ai=i(i=1,2,…,n),則無論b1,b2,…,bn填寫的順序如何,都有,根據(jù)新定義求出即可,(Ⅲ)方法一:交換每一列中兩個數(shù)的位置,所得的Sn的值不變,不妨設(shè)ai>bi,記,,求出Sn=A﹣B,即可證明,方法二:考慮如下表所示的任意兩種不同的填法,①若在兩種填法中k都位于同一行,②若在兩種填法中k位于不同行,即可證明【解答】解:(Ⅰ)∵a1=1,a2=3,a3=5,∴b1,b2,b3值為2,4,6∴S3=|a1﹣b1|+|a2﹣b2|+|a3﹣b3|=|1﹣b1|+|3﹣b2|+|5﹣b3|,∴S3的所有可能的取值為3,5,7,9.(Ⅱ)令ai=i(i=1,2,…,n),則無論b1,b2,…,bn填寫的順序如何,都有.因為ai=i,所以bi∈{n+1,n+2,…,2n},(i=1,2,…,n).因為ai<bi(i=1,2,…,n),所以.注:{a1,a2,…,an}={1,2,…,n},或{a1,a2,…,an}={n+1,n+2,…,2n}均滿足條件.(Ⅲ)解法一:顯然,交換每一列中兩個數(shù)的位置,所得的Sn的值不變.不妨設(shè)ai>bi,記,,其中i=1,2,…,n.則.因為,所以A+B與n具有相同的奇偶性.又因為A+B與A﹣B具有相同的奇偶性,所以Sn=A﹣B與n的奇偶性相同,所以Sn的所有可能取值的奇偶性相同.解法二:顯然,交換每一列中兩個數(shù)的位置,所得的Sn的值不變.考慮如下表所示的任意兩種不同的填法,,,不妨設(shè)ai<bi,a'i<b'i,其中i=1,2,…,n.a(chǎn)1a2…an
…b1b2…bn
….對于任意k∈{1,2,…,2n},①若在兩種填法中k都位于同一行,則k在Sn+S'n的表達式中或者只出現(xiàn)在中,或只出現(xiàn)在中,且出現(xiàn)兩次,則對k而言,在Sn+S'n的結(jié)果中得到±2k.②若在兩種填法中k位于不同行,則k在Sn+S'n的表達式中在與中各出現(xiàn)一次,則對k而言,在Sn+S'n的結(jié)果中得到0.由①②得,對于任意k∈{1,2,…,2n},Sn+S'n必為偶數(shù).所以,對于表格的所有不同的填法,Sn所有可能取值的奇偶性相同.【點評】本題考查了新定義的應(yīng)用,以及數(shù)列求和問題,考查了學生的分析問題和解決問題的能力,屬于難題.19.設(shè)f(x)=|x﹣1|+|x+1|,(x∈R)(Ⅰ)解不等式f(x)≤4;(Ⅱ)若存在非零實數(shù)b使不等式f(x)≥成立,求負數(shù)x的最大值.參考答案:【考點】絕對值不等式的解法;絕對值三角不等式.【分析】(Ⅰ)分類討論求出不等式的解集即可;(Ⅱ)求出的最小值,問題轉(zhuǎn)化為f(x)≥3,即|x﹣1|+|x+1|≥3,分類討論,求出負數(shù)x的最大值即可.【解答】解:(Ⅰ)f(x)≤4,即|x﹣1|+|x+1|≤4,x≥1時,x﹣1+x+1≤4,解得:1≤x≤2,﹣1<x<1時,1﹣x+x+1=2<4成立,x≤﹣1時,1﹣x﹣x﹣1=﹣2x≤4,解得:x≥﹣2,綜上,不等式的解集是[﹣2,2];(Ⅱ)由≥=3,若存在非零實數(shù)b使不等式f(x)≥成立,即f(x)≥3,即|x﹣1|+|x+1|≥3,x≤﹣1時,﹣2x≥3,∴x≤﹣1.5,∴x≤﹣1.5;﹣1<x≤1時,2≥3不成立;x>1時,2x≥3,∴x≥1.5,∴x≥1.5.綜上所述x≤﹣1.5或x≥1.5,故負數(shù)x的最大值是﹣1.5.20.如圖,已知矩形ABCD的邊AB=2,BC=,點E、F分別是邊AB、CD的中點,沿AF、EC分別把三角形ADF和三角形EBC折起,使得點D和點B重合,記重合后的位置為點P。
(1)求證:平面PCE平面PCF;
(2)設(shè)M、N分別為棱PA、EC的中點,求直線MN與平面PAE所成角的正弦;
(3)求二面角A-PE-C的大小。參考答案:(1)證明:
(4分)
(2)如圖,建立坐標系,則
,易知是平面PAE的法向量,
設(shè)MN與平面PAE所成的角為
(9分)(3)易知是平面PAE的法向量,設(shè)平面PEC的法向量則所以
所以二面角A-PE-C的大小為
(14分)21.(本小題滿分13分)在中,已知,,.(Ⅰ)求的值;(Ⅱ)求的值.參考答案:(Ⅰ)解:在中,,由正弦定理,.所以.(Ⅱ)解:因為,所以角為鈍角,從而角為銳角,于是,,22.已知,是平面上一動點,到直線上的射影為點,且滿足.(1)求點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年洗潔精項目投資分析及可行性報告
- 安徽重點項目-蚌埠生活垃圾焚燒發(fā)電廠項目可行性研究報告
- 冷凍冷藏庫可行性研究報告
- 年產(chǎn)160萬套木工藝家具項目可行性研究報告建議書
- 2025年數(shù)控火花機項目風險評價報告
- 澳門及橫琴某新能源汽車智慧產(chǎn)業(yè)園項目可行性研究報告
- 2022-2027年中國演藝行業(yè)市場全景評估及發(fā)展戰(zhàn)略規(guī)劃報告
- 中國日用品玻璃配件項目投資可行性研究報告
- 鐵路部件行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 2025營業(yè)執(zhí)照《房屋租賃合同》
- 服裝色彩搭配智慧樹知到期末考試答案2024年
- 自動扶梯事故應(yīng)急處置預案
- 招生人員培訓課件
- 2023-2024學年深圳市羅湖區(qū)七年級(上)期末考試 英語 試題(解析版)
- 中國陰離子交換膜行業(yè)調(diào)研分析報告2024年
- 醫(yī)美行業(yè)監(jiān)管政策與競爭環(huán)境
- 2024年02月湖北武漢市公安局招考聘用輔警267人筆試歷年高頻考題(難、易錯點薈萃)答案帶詳解附后
- 房屋移交的時間和方式
- 北京市西城區(qū)2022-2023學年七年級(上)期末數(shù)學試卷(人教版 含答案)
- 2024年福建寧德城市建設(shè)投資開發(fā)公司招聘筆試參考題庫含答案解析
- 電焊的安全防護技術(shù)模版
評論
0/150
提交評論