2023屆湖北省黃石市白沙片區(qū)重點名校中考押題數(shù)學預測卷含解析_第1頁
2023屆湖北省黃石市白沙片區(qū)重點名校中考押題數(shù)學預測卷含解析_第2頁
2023屆湖北省黃石市白沙片區(qū)重點名校中考押題數(shù)學預測卷含解析_第3頁
2023屆湖北省黃石市白沙片區(qū)重點名校中考押題數(shù)學預測卷含解析_第4頁
2023屆湖北省黃石市白沙片區(qū)重點名校中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,直線a,b被直線c所截,下列條件不能判定直線a與b平行的是()A.∠1=∠3 B.∠2+∠4=180° C.∠1=∠4 D.∠3=∠42.小明調(diào)查了班級里20位同學本學期購買課外書的花費情況,并將結果繪制成了如圖的統(tǒng)計圖.在這20位同學中,本學期購買課外書的花費的眾數(shù)和中位數(shù)分別是()A.50,50 B.50,30 C.80,50 D.30,503.如圖,已知AB∥DE,∠ABC=80°,∠CDE=140°,則∠C=()A.50° B.40° C.30° D.20°4.如圖所示,a∥b,直線a與直線b之間的距離是()A.線段PA的長度 B.線段PB的長度C.線段PC的長度 D.線段CD的長度5.估計的值在()A.0到l之間 B.1到2之間 C.2到3之間 D.3到4之間6.﹣3的相反數(shù)是()A. B. C. D.7.如圖所示,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個既無縫隙又無重疊的四邊形EFGH,若EH=3,EF=4,那么線段AD與AB的比等于()A.25:24 B.16:15 C.5:4 D.4:38.如圖,在△ABC中,AC=BC,點D在BC的延長線上,AE∥BD,點ED在AC同側,若∠CAE=118°,則∠B的大小為()A.31° B.32° C.59° D.62°9.如圖,一把帶有60°角的三角尺放在兩條平行線間,已知量得平行線間的距離為12cm,三角尺最短邊和平行線成45°角,則三角尺斜邊的長度為()A.12cm B.12cm C.24cm D.24cm10.如圖,平行于x軸的直線與函數(shù),的圖象分別相交于A,B兩點,點A在點B的右側,C為x軸上的一個動點,若的面積為4,則的值為A.8 B. C.4 D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,把Rt△ABC放在直角坐標系內(nèi),其中∠CAB=90°,BC=5,點A,B的坐標分別為(﹣1,0),(﹣4,0),將△ABC沿x軸向左平移,當點C落在直線y=﹣2x﹣6上時,則點C沿x軸向左平移了_____個單位長度.12.4=.13.小球在如圖所示的地板上自由地滾動,并隨機地停留在某塊方磚上,那么小球最終停留在黑色區(qū)域的概率是_____________________.14.用一個半徑為10cm半圓紙片圍成一個圓錐的側面(接縫忽略不計),則該圓錐的高為.15.如圖,在△PAB中,PA=PB,M、N、K分別是PA,PB,AB上的點,且AM=BK,BN=AK.若∠MKN=40°,則∠P的度數(shù)為___16.如圖,四邊形ACDF是正方形,和都是直角,且點三點共線,,則陰影部分的面積是__________.三、解答題(共8題,共72分)17.(8分)某體育用品商場預測某品牌運動服能夠暢銷,就用32000元購進了一批這種運動服,上市后很快脫銷,商場又用68000元購進第二批這種運動服,所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元.該商場兩次共購進這種運動服多少套?如果這兩批運動服每套的售價相同,且全部售完后總利潤不低于20%,那么每套售價至少是多少元?18.(8分)商場某種商品平均每天可銷售30件,每件盈利50元,為了盡快減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調(diào)査發(fā)現(xiàn),每件商品每降價1元,商場平均每天可多售出2件.若某天該商品每件降價3元,當天可獲利多少元?設每件商品降價x元,則商場日銷售量增加____件,每件商品,盈利______元(用含x的代數(shù)式表示);在上述銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2000元?19.(8分)先化簡,再在1,2,3中選取一個適當?shù)臄?shù)代入求值.20.(8分)我市在黨中央實施“精準扶貧”政策的號召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點為原點的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當年銷售完,達到產(chǎn)銷平衡,所獲毛利潤為W萬元.(毛利潤=銷售額﹣生產(chǎn)費用)(1)請直接寫出y與x以及z與x之間的函數(shù)關系式;(寫出自變量x的取值范圍)(2)求W與x之間的函數(shù)關系式;(寫出自變量x的取值范圍);并求年產(chǎn)量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?(3)由于受資金的影響,今年投入生產(chǎn)的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?21.(8分)如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點,BE交AC于F,連接DF.(1)證明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.22.(10分)某高科技產(chǎn)品開發(fā)公司現(xiàn)有員工50名,所有員工的月工資情況如下表:員工管理人員普通工作人員人員結構總經(jīng)理部門經(jīng)理科研人員銷售人員高級技工中級技工勤雜工員工數(shù)(名)1323241每人月工資(元)2100084002025220018001600950請你根據(jù)上述內(nèi)容,解答下列問題:(1)該公司“高級技工”有名;(2)所有員工月工資的平均數(shù)x為2500元,中位數(shù)為元,眾數(shù)為元;(3)小張到這家公司應聘普通工作人員.請你回答右圖中小張的問題,并指出用(2)中的哪個數(shù)據(jù)向小張介紹員工的月工資實際水平更合理些;(4)去掉四個管理人員的工資后,請你計算出其他員工的月平均工資(結果保留整數(shù)),并判斷能否反映該公司員工的月工資實際水平.23.(12分)如圖,已知,,.求證:.24.已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點D、E分別是邊AB、BC的中點,點F、G是邊AC的三等分點,DF、EG的延長線相交于點H,連接HA、HC.(1)求證:四邊形FBGH是菱形;(2)求證:四邊形ABCH是正方形.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:A.∵∠1=∠3,∴a∥b,故A正確;B.∵∠2+∠4=180°,∠2+∠1=180°,∴∠1=∠4,∵∠4=∠3,∴∠1=∠3,∴a∥b,故B正確;C.∵∠1=∠4,∠4=∠3,∴∠1=∠3,∴a∥b,故C正確;D.∠3和∠4是對頂角,不能判斷a與b是否平行,故D錯誤.故選D.考點:平行線的判定.2、A【解析】分析:根據(jù)扇形統(tǒng)計圖分別求出購買課外書花費分別為100、80、50、30、20元的同學人數(shù),再根據(jù)眾數(shù)、中位數(shù)的定義即可求解.詳解:由扇形統(tǒng)計圖可知,購買課外書花費為100元的同學有:20×10%=2(人),購買課外書花費為80元的同學有:20×25%=5(人),購買課外書花費為50元的同學有:20×40%=8(人),購買課外書花費為30元的同學有:20×20%=4(人),購買課外書花費為20元的同學有:20×5%=1(人),20個數(shù)據(jù)為100,100,80,80,80,80,80,50,50,50,50,50,50,50,50,30,30,30,30,20,在這20位同學中,本學期計劃購買課外書的花費的眾數(shù)為50元,中位數(shù)為(50+50)÷2=50(元).故選A.點睛:本題考查了扇形統(tǒng)計圖,平均數(shù),中位數(shù)與眾數(shù),注意掌握通過扇形統(tǒng)計圖可以很清楚地表示出各部分數(shù)量同總數(shù)之間的關系.3、B【解析】試題解析:延長ED交BC于F,∵AB∥DE,∴在△CDF中,故故選B.4、A【解析】分析:從一條平行線上的任意一點到另一條直線作垂線,垂線段的長度叫兩條平行線之間的距離,由此可得出答案.詳解:∵a∥b,AP⊥BC∴兩平行直線a、b之間的距離是AP的長度∴根據(jù)平行線間的距離相等∴直線a與直線b之間的距離AP的長度故選A.點睛:本題考查了平行線之間的距離,屬于基礎題,關鍵是掌握平行線之間距離的定義.5、B【解析】∵9<11<16,∴,∴故選B.6、D【解析】

相反數(shù)的定義是:如果兩個數(shù)只有符號不同,我們稱其中一個數(shù)為另一個數(shù)的相反數(shù),特別地,1的相反數(shù)還是1.【詳解】根據(jù)相反數(shù)的定義可得:-3的相反數(shù)是3.故選D.【點睛】本題考查相反數(shù),題目簡單,熟記定義是關鍵.7、A【解析】

先根據(jù)圖形翻折的性質(zhì)可得到四邊形EFGH是矩形,再根據(jù)全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面積公式即可解答.【詳解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四邊形EFGH的其它內(nèi)角都是90°,∴四邊形EFGH是矩形,∴EH=FG(矩形的對邊相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代換),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根據(jù)勾股定理得HF==5,又∵HE?EF=HF?EM,∴EM=,又∵AE=EM=EB(折疊后A、B都落在M點上),∴AB=2EM=,∴AD:AB=5:==25:1.故選A【點睛】本題考查的是圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,折疊以后的圖形與原圖形全等.8、A【解析】

根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB,再利用平行線的性質(zhì)解答即可.【詳解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°?118°,解得:∠B=31°,故選A.【點睛】此題考查等腰三角形的性質(zhì),關鍵是根據(jù)等腰三角形的性質(zhì)得出∠B=∠CAB.9、D【解析】

過A作AD⊥BF于D,根據(jù)45°角的三角函數(shù)值可求出AB的長度,根據(jù)含30°角的直角三角形的性質(zhì)求出斜邊AC的長即可.【詳解】如圖,過A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴=12,又∵Rt△ABC中,∠C=30°,∴AC=2AB=24,故選:D.【點睛】本題考查解直角三角形,在直角三角形中,30°角所對的直角邊等于斜邊的一半,熟記特殊角三角函數(shù)值是解題關鍵.10、A【解析】【分析】設,,根據(jù)反比例函數(shù)圖象上點的坐標特征得出,根據(jù)三角形的面積公式得到,即可求出.【詳解】軸,,B兩點縱坐標相同,設,,則,,,,故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,三角形的面積,熟知點在函數(shù)的圖象上,則點的坐標滿足函數(shù)的解析式是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

先根據(jù)勾股定理求得AC的長,從而得到C點坐標,然后根據(jù)平移的性質(zhì),將C點縱軸代入直線解析式求解即可得到答案.【詳解】解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,∴AC==1,∴點C的坐標為(﹣1,1).當y=﹣2x﹣6=1時,x=﹣5,∵﹣1﹣(﹣5)=1,∴點C沿x軸向左平移1個單位長度才能落在直線y=﹣2x﹣6上.故答案為1.【點睛】本題主要考查平移的性質(zhì),解此題的關鍵在于先利用勾股定理求得相關點的坐標,然后根據(jù)平移的性質(zhì)將其縱坐標代入直線函數(shù)式求解即可.12、2【解析】試題分析:根據(jù)算術平方根的定義,求數(shù)a的算術平方根,也就是求一個正數(shù)x,使得x2=a,則x就是a的算術平方根,特別地,規(guī)定0的算術平方根是0.∵22=4,∴4=2.考點:算術平方根.13、2【解析】試題分析:根據(jù)題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區(qū)域的可能有4種,因此可求得小球停留在黑色區(qū)域的概率為:41814、53【解析】試題分析:根據(jù)圖形可知圓錐的側面展開圖的弧長為2π×10÷2=10π(cm),因此圓錐的底面半徑為10π÷2π=5(cm),因此圓錐的高為:102-5考點:圓錐的計算15、100°【解析】

由條件可證明△AMK≌△BKN,再結合外角的性質(zhì)可求得∠A=∠MKN,再利用三角形內(nèi)角和可求得∠P.【詳解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=40°,∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,故答案為100°【點睛】本題主要考查全等三角形的判定和性質(zhì)及三角形內(nèi)角和定理,利用條件證得△AMK≌△BKN是解題的關鍵.16、8【解析】【分析】證明△AEC≌△FBA,根據(jù)全等三角形對應邊相等可得EC=AB=4,然后再利用三角形面積公式進行求解即可.【詳解】∵四邊形ACDF是正方形,∴AC=FA,∠CAF=90°,∴∠CAE+∠FAB=90°,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠ACE=∠FAB,又∵∠AEC=∠FBA=90°,∴△AEC≌△FBA,∴CE=AB=4,∴S陰影==8,故答案為8.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì),三角形面積等,求出CE=AB是解題的關鍵.三、解答題(共8題,共72分)17、(1)商場兩次共購進這種運動服600套;(2)每套運動服的售價至少是200元.【解析】

(1)設商場第一次購進套運動服,根據(jù)“第二批所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10元”即可列方程求解;(2)設每套運動服的售價為y元,根據(jù)“這兩批運動服每套的售價相同,且全部售完后總利潤率不低于20%”即可列不等式求解.【詳解】(1)設商場第一次購進x套運動服,由題意得解這個方程,得經(jīng)檢驗,是所列方程的根.答:商場兩次共購進這種運動服600套;(2)設每套運動服的售價為y元,由題意得,解這個不等式,得答:每套運動服的售價至少是200元.【點睛】此題主要考查分式方程的應用,一元一次不等式的應用,解題的關鍵是讀懂題意,找到等量及不等關系,正確列方程和不等式求解.18、(1)若某天該商品每件降價3元,當天可獲利1692元;(2)2x;50﹣x.(3)每件商品降價1元時,商場日盈利可達到2000元.【解析】

(1)根據(jù)“盈利=單件利潤×銷售數(shù)量”即可得出結論;

(2)根據(jù)“每件商品每降價1元,商場平均每天可多售出2件”結合每件商品降價x元,即可找出日銷售量增加的件數(shù),再根據(jù)原來沒見盈利50元,即可得出降價后的每件盈利額;

(3)根據(jù)“盈利=單件利潤×銷售數(shù)量”即可列出關于x的一元二次方程,解之即可得出x的值,再根據(jù)盡快減少庫存即可確定x的值.【詳解】(1)當天盈利:(50-3)×(30+2×3)=1692(元).

答:若某天該商品每件降價3元,當天可獲利1692元.

(2)∵每件商品每降價1元,商場平均每天可多售出2件,

∴設每件商品降價x元,則商場日銷售量增加2x件,每件商品,盈利(50-x)元.

故答案為2x;50-x.

(3)根據(jù)題意,得:(50-x)×(30+2x)=2000,

整理,得:x2-35x+10=0,

解得:x1=10,x2=1,

∵商城要盡快減少庫存,

∴x=1.

答:每件商品降價1元時,商場日盈利可達到2000元.【點睛】考查了一元二次方程的應用,解題的關鍵是根據(jù)題意找出數(shù)量關系列出一元二次方程(或算式).19、,當x=2時,原式=.【解析】試題分析:先括號內(nèi)通分,然后計算除法,最后取值時注意使得分式有意義,最后代入化簡即可.試題解析:原式===當x=2時,原式=.20、(1)y=x1.z=﹣x+30(0≤x≤100);(1)年產(chǎn)量為75萬件時毛利潤最大,最大毛利潤為1115萬元;(3)今年最多可獲得毛利潤1080萬元【解析】

(1)利用待定系數(shù)法可求出y與x以及z與x之間的函數(shù)關系式;(1)根據(jù)(1)的表達式及毛利潤=銷售額﹣生產(chǎn)費用,可得出w與x的函數(shù)關系式,再利用配方法求出最值即可;(3)首先求出x的取值范圍,再利用二次函數(shù)增減性得出答案即可.【詳解】(1)圖①可得函數(shù)經(jīng)過點(100,1000),設拋物線的解析式為y=ax1(a≠0),將點(100,1000)代入得:1000=10000a,解得:a=,故y與x之間的關系式為y=x1.圖②可得:函數(shù)經(jīng)過點(0,30)、(100,10),設z=kx+b,則,解得:,故z與x之間的關系式為z=﹣x+30(0≤x≤100);(1)W=zx﹣y=﹣x1+30x﹣x1=﹣x1+30x=﹣(x1﹣150x)=﹣(x﹣75)1+1115,∵﹣<0,∴當x=75時,W有最大值1115,∴年產(chǎn)量為75萬件時毛利潤最大,最大毛利潤為1115萬元;(3)令y=360,得x1=360,解得:x=±60(負值舍去),由圖象可知,當0<y≤360時,0<x≤60,由W=﹣(x﹣75)1+1115的性質(zhì)可知,當0<x≤60時,W隨x的增大而增大,故當x=60時,W有最大值1080,答:今年最多可獲得毛利潤1080萬元.【點睛】本題主要考查二次函數(shù)的應用以及待定系數(shù)法求一次函數(shù)解析式,注意二次函數(shù)最值的求法,一般用配方法.21、證明見解析【解析】試題分析:由AB=AD,CB=CD結合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再證△ABF≌△ADF即可得到∠AFB=∠AFD,結合∠AFB=∠CFE即可得到∠AFD=∠CFE;(2)由AB∥CD可得∠DCA=∠BAC結合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD結合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四邊形ABCD是菱形.試題解析:(1)在△ABC和△ADC中,

∵AB=AD,CB=CD,AC=AC,

∴△ABC≌△ADC,

∴∠BAC=∠DAC,

在△ABF和△ADF中,

∵AB=AD,∠BAC=∠DAC,AF=AF,

∴△ABF≌△ADF,

∴∠AFB=∠AFD.

(2)證明:∵AB∥CD,

∴∠BAC=∠ACD,

∵∠BAC=∠DAC,

∴∠ACD=∠CAD,

∴AD=CD,

∵AB=AD,CB=CD,

∴AB=CB=CD=AD,

∴四邊形ABCD是菱形.22、(1)16人;(2)工中位數(shù)是1700元;眾數(shù)是1600元;(3)用1700元或1600元來介紹更合理些.(4)能反映該公司員工的月工資實際水平.【解析】

(1)用總人數(shù)50減去其它部門的人數(shù);(2)根據(jù)中位數(shù)和眾數(shù)的定義求解即可;(3)由平均數(shù)、眾數(shù)、中位

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論