版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,其中正視圖是邊長為4的正三角形,俯視圖是由邊長為4的正三角形和一個半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.2.已知函數(shù),且),則“在上是單調(diào)函數(shù)”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件3.將函數(shù)的圖象先向右平移個單位長度,在把所得函數(shù)圖象的橫坐標(biāo)變?yōu)樵瓉淼谋?,縱坐標(biāo)不變,得到函數(shù)的圖象,若函數(shù)在上沒有零點,則的取值范圍是()A. B.C. D.4.已知函數(shù)的圖象在點處的切線方程是,則()A.2 B.3 C.-2 D.-35.已知,復(fù)數(shù),,且為實數(shù),則()A. B. C.3 D.-36.在中,“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件7.函數(shù)的圖象與函數(shù)的圖象的交點橫坐標(biāo)的和為()A. B. C. D.8.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.9.雙曲線的漸近線方程為()A. B. C. D.10.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.11.在中,,,,若,則實數(shù)()A. B. C. D.12.設(shè)曲線在點處的切線方程為,則()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知關(guān)于的方程在區(qū)間上恰有兩個解,則實數(shù)的取值范圍是________14.設(shè)常數(shù),如果的二項展開式中項的系數(shù)為-80,那么______.15.對于任意的正數(shù),不等式恒成立,則的最大值為_____.16.過拋物線C:()的焦點F且傾斜角為銳角的直線l與C交于A,B兩點,過線段的中點N且垂直于l的直線與C的準(zhǔn)線交于點M,若,則l的斜率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中,角、、所對的邊分別為、、,且.(1)求角的大??;(2)若,的面積為,求及的值.18.(12分)已知函數(shù)的最大值為,其中.(1)求實數(shù)的值;(2)若求證:.19.(12分)以直角坐標(biāo)系的原點為極點,軸的非負(fù)半軸為極軸,且兩坐標(biāo)系取相同的長度單位.已知曲線的參數(shù)方程:(為參數(shù)),直線的極坐標(biāo)方程:(1)求曲線的極坐標(biāo)方程;(2)若直線與曲線交于、兩點,求的最大值.20.(12分)設(shè)數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.21.(12分)如圖,四邊形是邊長為3的菱形,平面.(1)求證:平面;(2)若與平面所成角為,求二面角的正弦值.22.(10分)設(shè)數(shù)陣,其中、、、.設(shè),其中,且.定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過變換得到,再將經(jīng)過變換得到、,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個數(shù)的和為.(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,,求的值;(3)對任意確定的一個數(shù)陣,證明:的所有可能取值的和不超過.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】由題意得到該幾何體是一個組合體,前半部分是一個高為底面是邊長為4的等邊三角形的三棱錐,后半部分是一個底面半徑為2的半個圓錐,體積為故答案為A.點睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長對正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長是幾何體的長;俯視圖的長是幾何體的長,寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.2.C【解析】
先求出復(fù)合函數(shù)在上是單調(diào)函數(shù)的充要條件,再看其和的包含關(guān)系,利用集合間包含關(guān)系與充要條件之間的關(guān)系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調(diào)遞減,單調(diào)遞增,在上是單調(diào)函數(shù),其充要條件為即.故選:C.【點睛】本題考查了復(fù)合函數(shù)的單調(diào)性的判斷問題,充要條件的判斷,屬于基礎(chǔ)題.3.A【解析】
根據(jù)y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質(zhì),求得ω的取值范圍.【詳解】函數(shù)的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標(biāo)變?yōu)樵瓉淼谋?縱坐標(biāo)不變),得到函數(shù)的圖象,∴周期,若函數(shù)在上沒有零點,∴,∴,,解得,又,解得,當(dāng)k=0時,解,當(dāng)k=-1時,,可得,.故答案為:A.【點睛】本題考查函數(shù)y=Acos(ωx+φ)的圖象變換及零點問題,此類問題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關(guān)系式,求解可得,屬于較難題.4.B【解析】
根據(jù)求出再根據(jù)也在直線上,求出b的值,即得解.【詳解】因為,所以所以,又也在直線上,所以,解得所以.故選:B【點睛】本題主要考查導(dǎo)數(shù)的幾何意義,意在考查學(xué)生對這些知識的理解掌握水平.5.B【解析】
把和代入再由復(fù)數(shù)代數(shù)形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數(shù),所以,解得.【點睛】本題考查復(fù)數(shù)的概念,考查運算求解能力.6.D【解析】
通過列舉法可求解,如兩角分別為時【詳解】當(dāng)時,,但,故充分條件推不出;當(dāng)時,,但,故必要條件推不出;所以“”是“”的既不充分也不必要條件.故選:D.【點睛】本題考查命題的充分與必要條件判斷,三角函數(shù)在解三角形中的具體應(yīng)用,屬于基礎(chǔ)題7.B【解析】
根據(jù)兩個函數(shù)相等,求出所有交點的橫坐標(biāo),然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點的橫坐標(biāo)的和,故選B.【點睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運算的核心素養(yǎng).8.B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計算能力,屬于中檔題9.C【解析】
根據(jù)雙曲線的標(biāo)準(zhǔn)方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.10.A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A【點睛】本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.11.D【解析】
將、用、表示,再代入中計算即可.【詳解】由,知為的重心,所以,又,所以,,所以,.故選:D【點睛】本題考查平面向量基本定理的應(yīng)用,涉及到向量的線性運算,是一道中檔題.12.D【解析】
利用導(dǎo)數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查運算求解能力,是基礎(chǔ)題二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先換元,令,將原方程轉(zhuǎn)化為,利用參變分離法轉(zhuǎn)化為研究兩函數(shù)的圖像交點,觀察圖像,即可求出.【詳解】因為關(guān)于的方程在區(qū)間上恰有兩個解,令,所以方程在上只有一解,即有,直線與在的圖像有一個交點,由圖可知,實數(shù)的取值范圍是,但是當(dāng)時,還有一個根,所以此時共有3個根.綜上實數(shù)的取值范圍是.【點睛】本題主要考查學(xué)生運用轉(zhuǎn)化與化歸思想的能力,方程有解問題轉(zhuǎn)化成兩函數(shù)的圖像有交點問題,是常見的轉(zhuǎn)化方式.14.【解析】
利用二項式定理的通項公式即可得出.【詳解】的二項展開式的通項公式:,令,解得.∴,解得.故答案為:-2.【點睛】本小題主要考查根據(jù)二項式展開式的系數(shù)求參數(shù),屬于基礎(chǔ)題.15.【解析】
根據(jù)均為正數(shù),等價于恒成立,令,轉(zhuǎn)化為恒成立,利用基本不等式求解最值.【詳解】由題均為正數(shù),不等式恒成立,等價于恒成立,令則,當(dāng)且僅當(dāng)即時取得等號,故的最大值為.故答案為:【點睛】此題考查不等式恒成立求參數(shù)的取值范圍,關(guān)鍵在于合理進(jìn)行等價變形,此題可以構(gòu)造二次函數(shù)求解,也可利用基本不等式求解.16.【解析】
分別過A,B,N作拋物線的準(zhǔn)線的垂線,垂足分別為,,,根據(jù)拋物線定義和求得,從而求得直線l的傾斜角.【詳解】分別過A,B,N作拋物線的準(zhǔn)線的垂線,垂足分別為,,,由拋物線的定義知,,,因為,所以,所以,即直線的傾斜角為,又直線與直線l垂直且直線l的傾斜角為銳角,所以直線l的傾斜角為,.故答案為:【點睛】此題考查拋物線的定義,根據(jù)已知條件做出輔助線利用拋物線定義和幾何關(guān)系即可求解,屬于較易題目.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2);【解析】
(1)由代入中計算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【詳解】(1)因為,可得:,∴,或(舍),∵,∴.(2)由余弦定理,得所以,故,又,所以,所以.【點睛】本題考查二倍角公式以及正余弦定理解三角形,考查學(xué)生的運算求解能力,是一道容易題.18.(1)1;(2)證明見解析.【解析】
(1)利用零點分段法將表示為分段函數(shù)的形式,由此求得的最大值,進(jìn)而求得的值.(2)利用(1)的結(jié)論,將轉(zhuǎn)化為,求得的取值范圍,利用換元法,結(jié)合函數(shù)的單調(diào)性,證得,由此證得不等式成立.【詳解】(1)當(dāng)時,取得最大值.(2)證明:由(1)得,,,當(dāng)且僅當(dāng)時等號成立,令,則在上單調(diào)遞減當(dāng)時,.【點睛】本小題主要考查含有絕對值的函數(shù)的最值的求法,考查利用基本不等式進(jìn)行證明,屬于中檔題.19.(1);(2)10【解析】
(1)消去參數(shù),可得曲線C的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,代入即可求得曲線C的極坐標(biāo)方程;(2)將代入曲線C的極坐標(biāo)方程,利用根與系數(shù)的關(guān)系,求得,進(jìn)而得到=,結(jié)合三角函數(shù)的性質(zhì),即可求解.【詳解】(1)由題意,曲線C的參數(shù)方程為,消去參數(shù),可得曲線C的普通方程為,即,又由,代入可得曲線C的極坐標(biāo)方程為.(2)將代入,得,即,所以=,其中,當(dāng)時,取最大值,最大值為10.【點睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及曲線的極坐標(biāo)方程的應(yīng)用,著重考查了運算與求解能力,屬于中檔試題.20.(1);(2).【解析】
(1)令可求得的值,令時,由可得出,兩式相減可得的表達(dá)式,然后對是否滿足在時的表達(dá)式進(jìn)行檢驗,由此可得出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,對分奇數(shù)和偶數(shù)兩種情況討論,利用奇偶分組求和法結(jié)合等差數(shù)列和等比數(shù)列的求和公式可求得結(jié)果.【詳解】(1),當(dāng)時,;當(dāng)時,由得,兩式相減得,.滿足.因此,數(shù)列的通項公式為;(2).①當(dāng)為奇數(shù)時,;②當(dāng)為偶數(shù)時,.綜上所述,.【點睛】本題考查數(shù)列通項的求解,同時也考查了奇偶分組求和法,考查計算能力,屬于中等題.21.(1)證明見解析(2)【解析】
(1)由已知線面垂直得,結(jié)合菱形對角線垂直,可證得線面垂直;(2)由已知知兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,由已知線面垂直知與平面所成角為,這樣可計算出的長,寫出各點坐標(biāo),求出平面的法向量,由法向量夾角可得二面角.【詳解】證明:(1)因為平面,平面,所以.因為四邊形是菱形,所以.又因為,平面,平面,所以平面.解:(2)據(jù)題設(shè)知,兩兩互相垂直.以分別為軸,軸,軸建立空間直角坐標(biāo)系如圖所示,因為與平面所成角為,即,所以又,所以,所以所以設(shè)平面的一個法向量,則令,則.因為平面,所以為平面的一個法向量,且所以,.所以二面角的正弦值為.【點睛】本題考查線面垂直的判定定理和性質(zhì)定理,考查用向量法求二面角.立體幾何中求空間角常常是建立空間直角坐標(biāo)系,用空間向量法求空間角,這樣可減少思維量,把問題轉(zhuǎn)化為計算.22.(1);(2);(3)見解析.【解析】
(1)由,能求出經(jīng)過變換后得到的數(shù)陣;(2)由,,求出數(shù)陣經(jīng)過變化后的矩陣,進(jìn)而可求得的值;(3)分和兩種情況討論,推導(dǎo)出變換后數(shù)陣的第一行和第二行的數(shù)字之和,由此能證明的所有可能取值的和不超過.【詳解】(1),經(jīng)過變換后得到的數(shù)陣;(2)經(jīng)變換后得,故;(3)若,在的所有非空子集中,含有且不含的子集共個,經(jīng)過變換后
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024南寧市無人機飛行服務(wù)合同
- 2024年度原料藥購買合同
- 2024工程承包合同工期及質(zhì)量要求
- 2024年地?zé)捲瓦M(jìn)口運輸合同
- 2024年廢料回收與銷售專項合同
- 人教版四年級上冊數(shù)學(xué)第四單元《三位數(shù)乘兩位數(shù)》測試卷及參考答案(培優(yōu)b卷)
- 2024年建筑行業(yè)腳手架承包合同
- 廣東省中山市共進(jìn)聯(lián)盟2024-2025學(xué)年七年級上學(xué)期期中生物試題
- 跨境電商物流模式研究
- 2024年度國際搬家運輸及報關(guān)合同
- NET Core 底層入門(完整版)
- 淺談歌曲《紅豆詞》的藝術(shù)特征
- 【設(shè)計師】訪談平面設(shè)計師
- JGT153-2012 滑道車庫門標(biāo)準(zhǔn)
- 圍術(shù)期低氧血癥病例討論課件
- 中國歷年各省份GDP數(shù)據(jù)(1993-2018)
- 大學(xué)軍事理論課教程第四章現(xiàn)代戰(zhàn)爭第二節(jié) 新軍事革命
- 職業(yè)生涯規(guī)劃-自我認(rèn)知-價值觀
- 安徽省蕪湖市2023年七年級上學(xué)期語文期末試卷(附答案)
- 上肢康復(fù)機器人說明書
- (1.28)-法律的含義及歷史發(fā)展
評論
0/150
提交評論