版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第四章抽樣與參數(shù)估計(jì)第一節(jié)抽樣與抽樣分布學(xué)習(xí)目標(biāo)區(qū)分總體分布、樣本分布、抽樣分布掌握隨機(jī)抽樣方式理解抽樣分布與總體分布的關(guān)系掌握單總體參數(shù)推斷時(shí)樣本統(tǒng)計(jì)量的分布掌握雙總體參數(shù)推斷時(shí)樣本統(tǒng)計(jì)量的分布掌握抽樣誤差的測(cè)度及其影響因素4.1.1
三種不同性質(zhì)的分布總體分布樣本分布抽樣分布總體中各元素的觀察值所形成的分布分布通常是未知的可以假定它服從某種分布總體分布
(populationdistribution)總體一個(gè)樣本中各觀察值的分布也稱經(jīng)驗(yàn)分布當(dāng)樣本容量n逐漸增大時(shí),樣本分布逐漸接近總體的分布樣本分布
(sampledistribution)樣本樣本統(tǒng)計(jì)量的概率分布是一種理論概率分布隨機(jī)變量是樣本統(tǒng)計(jì)量樣本均值,樣本比例,樣本方差等結(jié)果來自容量相同的所有可能樣本樣本統(tǒng)計(jì)量提供的信息,是進(jìn)行推斷的理論基礎(chǔ),也是抽樣推斷科學(xué)性的重要依據(jù) 抽樣分布
(samplingdistribution)抽樣分布
(samplingdistribution)總體計(jì)算樣本統(tǒng)計(jì)量例如:樣本均值、比例、方差樣本4.1.2
樣本統(tǒng)計(jì)量的抽樣分布
(一個(gè)總體參數(shù)推斷時(shí))樣本均值的抽樣分布樣本比例的抽樣分布抽樣方差的抽樣分布樣本均值的抽樣分布容量相同的所有可能樣本的樣本均值的概率分布一種理論概率分布進(jìn)行推斷總體總體均值的理論基礎(chǔ) 樣本均值的抽樣分布樣本均值的抽樣分布
(例題分析)(重復(fù)抽樣)【例】設(shè)一個(gè)總體,含有4個(gè)元素(個(gè)體)
,即總體單位數(shù)N=4。4
個(gè)個(gè)體分別為x1=1、x2=2、x3=3
、x4=4
??傮w的均值、方差及分布如下總體分布14230.1.2.3均值和方差樣本均值的抽樣分布
(例題分析)(重復(fù)抽樣)
現(xiàn)從總體中抽取n=2的簡(jiǎn)單隨機(jī)樣本,在重復(fù)抽樣條件下,共有42=16個(gè)樣本。所有樣本的結(jié)果為所有可能的n
=2的樣本(共16個(gè))第一個(gè)觀察值第二個(gè)觀察值123411,11,21,31,422,12,22,32,433,13,23,33,444,14,24,34,4樣本均值的抽樣分布
(例題分析)(重復(fù)抽樣)16個(gè)樣本的均值(x)第一個(gè)觀察值第二個(gè)觀察值123411.01.52.02.521.52.02.53.032.02.53.03.542.53.03.54.0計(jì)算出各樣本的均值如下表。給出樣本均值的抽樣分布均值X的取值1.01.52.02.53.03.54.0均值X的個(gè)數(shù)1234321取值的概率P(X
)1/162/163/164/163/162/161/16X樣本均值的抽樣分布1.000.10.20.3P(X)1.53.04.03.52.02.5樣本均值的分布與總體分布的比較
(例題分析)(重復(fù)抽樣)=2.5σ2=1.25總體分布14230.1.2.3抽樣分布P(X)1.00.1.2.31.53.04.03.52.02.5X樣本均值的抽樣分布
(例題分析)(不重復(fù)抽樣)
如果從總體中抽取n=2的簡(jiǎn)單隨機(jī)樣本,在不重復(fù)抽樣條件下,共有4×3=12個(gè)樣本。所有樣本的結(jié)果為所有可能的n=2的樣本(共12個(gè))第一個(gè)觀察值第二個(gè)觀察值123411,21,31,422,12,32,433,13,23,444,14,24,3樣本均值的抽樣分布
(例題分析)(不重復(fù)抽樣)16個(gè)樣本的均值(x)第一個(gè)觀察值第二個(gè)觀察值123411.52.02.521.52.53.032.02.53.542.53.03.5計(jì)算出各樣本的均值如下表。給出樣本均值的抽樣分布均值X的取值1.52.02.53.03.5均值X的個(gè)數(shù)22422取值的概率P(X
)2/122/124/122/122/12X樣本均值的抽樣分布1.000.10.20.3P(X)1.53.04.03.52.02.5樣本均值的抽樣分布
(例題分析)(不重復(fù)抽樣)=2.5σ2=1.25總體分布14230.1.2.3抽樣分布P(X)1.00.1.2.31.53.04.03.52.02.5X樣本均值的抽樣分布
與中心極限定理=50
=10X總體分布n=4抽樣分布Xn=16當(dāng)總體服從正態(tài)分布N~(μ,σ2)時(shí),來自該總體的所有容量為n的樣本的均值X也服從正態(tài)分布,X
的數(shù)學(xué)期望為μ,方差為σ2/n。即X~N(μ,σ2/n)中心極限定理
(centrallimittheorem)當(dāng)樣本容量足夠大時(shí)(n
30),樣本均值的抽樣分布逐漸趨于正態(tài)分布中心極限定理:設(shè)從均值為,方差為
2的一個(gè)任意總體中抽取容量為n的樣本,當(dāng)n充分大時(shí),樣本均值的抽樣分布近似服從均值為μ、方差為σ2/n的正態(tài)分布一個(gè)任意分布的總體X中心極限定理
(centrallimittheorem)的分布趨于正態(tài)分布的過程抽樣分布與總體分布的關(guān)系總體分布正態(tài)分布非正態(tài)分布大樣本小樣本正態(tài)分布正態(tài)分布非正態(tài)分布樣本均值的數(shù)學(xué)期望樣本均值的方差重復(fù)抽樣不重復(fù)抽樣樣本均值的抽樣分布
(數(shù)學(xué)期望與方差)樣本均值的抽樣分布
(數(shù)學(xué)期望與方差)比較及結(jié)論:1.樣本均值的均值(數(shù)學(xué)期望)等于總體均值
2.樣本均值的方差等于總體方差的1/n均值的抽樣標(biāo)準(zhǔn)差所有可能的樣本均值的標(biāo)準(zhǔn)差,測(cè)度所有樣本均值的離散程度,又稱為抽樣平均誤差小于總體標(biāo)準(zhǔn)差計(jì)算公式為重復(fù)抽樣不重復(fù)抽樣樣本比例的抽樣分布總體(或樣本)中具有某種屬性的單位與全部單位總數(shù)之比不同性別的人與全部人數(shù)之比合格品(或不合格品)與全部產(chǎn)品總數(shù)之比總體比例可表示為樣本比例可表示為
比例
(proportion)容量相同的所有可能樣本的樣本比例的概率分布當(dāng)樣本容量很大時(shí),樣本比例的抽樣分布可用正態(tài)分布近似一種理論概率分布推斷總體總體比例的理論基礎(chǔ) 樣本比例的抽樣分布樣本比例的抽樣分布
(例題分析)(重復(fù)抽樣)【例】設(shè)某機(jī)床5臺(tái)中有2臺(tái)優(yōu)、3臺(tái)良,即總體單位數(shù)N=5。5個(gè)個(gè)體分別為優(yōu)品A1、A2,良品B1、B2、B3
。若抽到優(yōu)品,記x=1;若抽到良品,記x=0。當(dāng)n=2時(shí),樣本比例抽樣分布如下表所有可能的n
=2的樣本(共25個(gè))樣本比率樣本頻率P(p)1(A1,A1)(A1,A2)(A2,A1)(A2,A2)4/250.5(A1,B1)(A1,B2)(A1,B3)(A2,B1)(A2,B2)(A2,B3)(B1,A1)(B1,A2)(B2,A1)(B2,A2)(B3,A1)(B3,A2)12/250(B1,B1)(B1,B2)(B1,B3)(B2,B1)(B2,B2)(B2,B3)(B3,B1)(B3,B2)(B3,B3)9/25樣本比例的抽樣分布
(例題分析)(重復(fù)抽樣)重復(fù)抽樣樣本比例抽樣分布04/25P(p)8/2512/2500.51.0
p總體分布:樣本分布:樣本比例的抽樣分布
(例題分析)(不重復(fù)抽樣)【例】仍用上例,采用不重復(fù)隨即抽樣時(shí),機(jī)床優(yōu)質(zhì)品比率p的抽樣分布如下表所有可能的n
=2的樣本(共20個(gè))樣本比率樣本頻率P(p)1(A1,A2)(A2,A1)2/200.5(A1,B1)(A1,B2)(A1,B3)(A2,B1)(A2,B2)(A2,B3)(B1,A1)(B1,A2)(B2,A1)(B2,A2)(B3,A1)(B3,A2)12/200(B1,B2)(B1,B3)(B2,B1)(B2,B3)(B3,B1)(B3,B2)6/20樣本比例的抽樣分布
(例題分析)(不重復(fù)抽樣)p不重復(fù)抽樣樣本比例抽樣分布00.10.20.3P(p)0.40.50.600.51.0總體分布:樣本分布:樣本比例的數(shù)學(xué)期望樣本比例的方差重復(fù)抽樣不重復(fù)抽樣樣本比例的抽樣分布
(數(shù)學(xué)期望與方差)樣本方差的抽樣分布樣本方差的分布對(duì)于來自正態(tài)總體N(u,σ2)的簡(jiǎn)單隨機(jī)樣本,則比值的抽樣分布服從自由度為(n-1)
的2分布,即卡方(2)分布
(2
distribution)χ2分布:設(shè)X1,X2,……,Xn是來自總體N(0,1)的樣本,則統(tǒng)計(jì)量服從自由度為n的χ2分布,記為χ2~χ2(n)。設(shè),則令,則Y服從自由度為1的2分布,即
當(dāng)總體,從中抽取容量為n的樣本,則分布的變量值始終為正分布的形狀取決于其自由度n的大小,通常為不對(duì)稱的右偏分布,但隨著自由度的增大逐漸趨于對(duì)稱期望為:E(2)=n,方差為:D(2)=2n(n為自由度)
可加性:若U和V為兩個(gè)獨(dú)立的2分布隨機(jī)變量,U~2(n1),V~2(n2),則U+V這一隨機(jī)變量服從自由度為n1+n2的2分布2分布
(性質(zhì)和特點(diǎn))c2分布
(圖示)
選擇容量為n的簡(jiǎn)單隨機(jī)樣本計(jì)算樣本方差S2計(jì)算卡方值2=(n-1)S2/σ2計(jì)算出所有的
2值不同容量樣本的抽樣分布c2n=1n=4n=10n=20ms總體4.1.3
樣本統(tǒng)計(jì)量的抽樣分布
(兩個(gè)總體參數(shù)推斷時(shí))兩個(gè)樣本均值之差的抽樣分布兩個(gè)樣本比例之差的抽樣分布兩個(gè)樣本方差比的抽樣分布兩個(gè)樣本均值之差的抽樣分布兩個(gè)總體都為正態(tài)分布,即,兩個(gè)樣本均值之差的抽樣分布服從正態(tài)分布,其分布的數(shù)學(xué)期望為兩個(gè)總體均值之差方差為各自的方差之和 兩個(gè)樣本均值之差的抽樣分布兩個(gè)樣本均值之差的抽樣分布
m1s1總體1s2
m2總體2抽取簡(jiǎn)單隨機(jī)樣樣本容量n1計(jì)算X1抽取簡(jiǎn)單隨機(jī)樣樣本容量n2計(jì)算X2計(jì)算每一對(duì)樣本的X1-X2所有可能樣本的X1-X2m1-m2抽樣分布兩個(gè)樣本比例之差的抽樣分布兩個(gè)總體都服從二項(xiàng)分布分別從兩個(gè)總體中抽取容量為n1和n2的獨(dú)立樣本,當(dāng)兩個(gè)樣本都為大樣本時(shí),兩個(gè)樣本比例之差的抽樣分布可用正態(tài)分布來近似分布的數(shù)學(xué)期望為方差為各自的方差之和 兩個(gè)樣本比例之差的抽樣分布兩個(gè)樣本方差比的抽樣分布兩個(gè)樣本方差比的抽樣分布
兩個(gè)總體都為正態(tài)分布,即X1~N(μ1,σ12)的一個(gè)樣本,Y1,Y2,…,Yn2是來自正態(tài)總體X2~N(μ2,σ22)從兩個(gè)總體中分別抽取容量為n1和n2的獨(dú)立樣本兩個(gè)樣本方差比的抽樣分布,服從分子自由度為(n1-1),分母自由度為(n2-1)的F分布,即由統(tǒng)計(jì)學(xué)家費(fèi)舍(R.A.Fisher)
提出的,以其姓氏的第一個(gè)字母來命名則設(shè)若U為服從自由度為n1的2分布,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版離婚雙方撫養(yǎng)子女權(quán)益保障合同版B版
- 2024年種子包裝與運(yùn)輸服務(wù)合同模板3篇
- 2024年石油產(chǎn)品國(guó)際貿(mào)易結(jié)算與支付合同范本3篇
- 2024-2025學(xué)年桂林市永福縣數(shù)學(xué)三上期末學(xué)業(yè)水平測(cè)試試題含解析
- 2025中國(guó)鐵塔集團(tuán)上海分公司招聘8人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)葛洲壩集團(tuán)股份限公司紀(jì)檢崗位招聘2人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)移動(dòng)廣西公司招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)電信集團(tuán)限公司政企信息服務(wù)事業(yè)群招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)電信山東聊城分公司校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025中國(guó)農(nóng)業(yè)科學(xué)院植物保護(hù)研究所農(nóng)藥應(yīng)用風(fēng)險(xiǎn)控制團(tuán)隊(duì)科研助理公開招聘3人高頻重點(diǎn)提升(共500題)附帶答案詳解
- 《海上漁業(yè)養(yǎng)殖設(shè)施指南》2024
- 【發(fā)動(dòng)機(jī)曲軸數(shù)控加工工藝過程卡片的設(shè)計(jì)7800字(論文)】
- 店鋪(初級(jí))營(yíng)銷師認(rèn)證考試題庫(kù)附有答案
- 飛機(jī)儀電與飛控系統(tǒng)原理智慧樹知到期末考試答案章節(jié)答案2024年中國(guó)人民解放軍海軍航空大學(xué)
- JG197-2006 預(yù)應(yīng)力混凝土空心方樁
- 口腔潰瘍的表觀遺傳調(diào)控與治療靶點(diǎn)
- 醫(yī)院護(hù)理培訓(xùn)課件:《安全注射》
- 礦山開采合股協(xié)議書
- 11304+《管理案例分析》紙考2023.12
- 《勇敢面對(duì)挫折和困難》參考課件
- 現(xiàn)代通信技術(shù)導(dǎo)論智慧樹知到期末考試答案章節(jié)答案2024年北京科技大學(xué)
評(píng)論
0/150
提交評(píng)論