電磁場(chǎng)與電磁波第三章_第1頁(yè)
電磁場(chǎng)與電磁波第三章_第2頁(yè)
電磁場(chǎng)與電磁波第三章_第3頁(yè)
電磁場(chǎng)與電磁波第三章_第4頁(yè)
電磁場(chǎng)與電磁波第三章_第5頁(yè)
已閱讀5頁(yè),還剩87頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第3章靜態(tài)電磁場(chǎng)及其邊值問(wèn)題的解1

本章內(nèi)容

3.1

靜電場(chǎng)分析

3.2

導(dǎo)電媒質(zhì)中的恒定電場(chǎng)分析

3.3

恒定磁場(chǎng)分析

3.4

靜態(tài)場(chǎng)的邊值問(wèn)題及解的惟一性定理

3.5

鏡像法

3.6

分離變量法靜態(tài)電磁場(chǎng):場(chǎng)量不隨時(shí)間變化,包括:

靜電場(chǎng)、恒定電場(chǎng)和恒定磁場(chǎng)時(shí)變情況下,電場(chǎng)和磁場(chǎng)相互關(guān)聯(lián),構(gòu)成統(tǒng)一的電磁場(chǎng)靜態(tài)情況下,電場(chǎng)和磁場(chǎng)由各自的源激發(fā),且相互獨(dú)立

23.1靜電場(chǎng)分析

學(xué)習(xí)內(nèi)容

3.1.1

靜電場(chǎng)的基本方程和邊界條件

3.1.2

電位函數(shù)

3.1.3

導(dǎo)體系統(tǒng)的電容與部分電容

3.1.4

靜電場(chǎng)的能量

3.1.5

靜電力3微分形式:本構(gòu)關(guān)系:1.基本方程積分形式:或3.1.1靜電場(chǎng)的基本方程和邊界條件2.邊界條件或若分界面上不存在面電荷,即,則4介質(zhì)2介質(zhì)1場(chǎng)矢量的折射關(guān)系

在靜電平衡的情況下,導(dǎo)體內(nèi)部的電場(chǎng)為0,則導(dǎo)體表面的邊界條件為

或?qū)w表面的邊界條件5由即靜電場(chǎng)可以用一個(gè)標(biāo)量函數(shù)的梯度來(lái)表示,標(biāo)量函數(shù)稱為靜電場(chǎng)的標(biāo)量電位或簡(jiǎn)稱電位。1.電位函數(shù)的定義3.1.2

電位函數(shù)2.電位的表達(dá)式空間中點(diǎn)電荷產(chǎn)生的電場(chǎng)為:空間中點(diǎn)電荷產(chǎn)生的電位為:6同理得,面電荷的電位:故得點(diǎn)電荷的電位:線電荷的電位:對(duì)于連續(xù)的體分布電荷,由73.電位差兩端點(diǎn)乘,則有將關(guān)于電位差的說(shuō)明

P、Q兩點(diǎn)間的電位差等于電場(chǎng)力將單位正電荷從P點(diǎn)移至Q點(diǎn)所做的功,電場(chǎng)力使單位正電荷由高電位處移到低電位處。電位差也稱為電壓,可用U表示。電位差有確定值,只與首尾兩點(diǎn)位置有關(guān),與積分路徑無(wú)關(guān)。上式兩邊從點(diǎn)P到點(diǎn)Q沿任意路徑進(jìn)行積分,得P、Q兩點(diǎn)間的電位差電場(chǎng)力做的功8靜電位不惟一,可以相差一個(gè)常數(shù),即選參考點(diǎn)令參考點(diǎn)電位為零電位確定值(電位差)兩點(diǎn)間電位差有定值

選擇電位參考點(diǎn)的原則

應(yīng)使電位表達(dá)式有意義。應(yīng)使電位表達(dá)式最簡(jiǎn)單。若電荷分布在有限區(qū)域,通常取無(wú)限遠(yuǎn)作電位參考點(diǎn)。同一個(gè)問(wèn)題只能有一個(gè)參考點(diǎn)。4.電位參考點(diǎn)

為使空間各點(diǎn)電位具有確定值,可以選定空間某一點(diǎn)作為參考點(diǎn),且令參考點(diǎn)的電位為零,由于空間各點(diǎn)與參考點(diǎn)的電位差為確定值,所以該點(diǎn)的電位也就具有確定值,即95.

電位的微分方程在無(wú)源區(qū)域,在均勻介質(zhì)中,有標(biāo)量泊松方程拉普拉斯方程106.靜電位的邊界條件

設(shè)P1和P2是介質(zhì)分界面兩側(cè)緊貼界面的相鄰兩點(diǎn),其電位分別為1和2。當(dāng)兩點(diǎn)間距離Δl→0時(shí)導(dǎo)體表面上電位的邊界條件:媒質(zhì)2媒質(zhì)1若介質(zhì)分界面上無(wú)自由電荷,即常數(shù),由和11電容器廣泛應(yīng)用于電子設(shè)備的電路中:在電子電路中,利用電容器來(lái)實(shí)現(xiàn)濾波、移相、隔直、旁路、選頻等作用。通過(guò)電容、電感、電阻的排布,可組合成各種功能的復(fù)雜電路。在電力系統(tǒng)中,可利用電容器來(lái)改善系統(tǒng)的功率因數(shù),以減少電能的損失和提高電氣設(shè)備的利用率。

3.1.3導(dǎo)體系統(tǒng)的電容與部分電容12電容是導(dǎo)體系統(tǒng)的一種基本屬性,是描述導(dǎo)體系統(tǒng)儲(chǔ)存電荷能力的物理量。孤立導(dǎo)體的電容定義為所帶電量q與其電位的比值,即1.電容孤立導(dǎo)體的電容兩個(gè)帶等量異號(hào)電荷(q)的導(dǎo)體組成的電容器,其電容為電容的大小只與導(dǎo)體系統(tǒng)的幾何尺寸、形狀和及周圍電介質(zhì)的特性參數(shù)有關(guān),而與導(dǎo)體的帶電量和電位無(wú)關(guān)。13

(1)假定兩導(dǎo)體上分別帶電荷+q和-q;

(2)計(jì)算兩導(dǎo)體間的電場(chǎng)強(qiáng)度E;計(jì)算電容的步驟:

(4)求比值,即得出所求電容。

(3)由 ,求出兩導(dǎo)體間的電位差;14

解:設(shè)內(nèi)導(dǎo)體的電荷為q

,則由高斯定理可求得內(nèi)外導(dǎo)體間的電場(chǎng)同心導(dǎo)體間的電壓球形電容器的電容當(dāng)時(shí),

例3.1.4同心球形電容器的內(nèi)導(dǎo)體半徑為a、外導(dǎo)體半徑為b,其間填充介電常數(shù)為ε的均勻介質(zhì)。求此球形電容器的電容。孤立導(dǎo)體球的電容15

例3.1.5

如圖所示的平行雙線傳輸線,導(dǎo)線半徑為a,兩導(dǎo)線的軸線距離為D,且D>>a,求傳輸線單位長(zhǎng)度的電容。

設(shè)兩導(dǎo)線單位長(zhǎng)度帶電量分別為和。由于,故可近似地認(rèn)為電荷分別均勻分布在兩導(dǎo)線的表面上。應(yīng)用高斯定理和疊加原理,可得到兩導(dǎo)線之間的平面上任一點(diǎn)P的電場(chǎng)強(qiáng)度為兩導(dǎo)線間的電位差故單位長(zhǎng)度的電容為16

例3.1.6

同軸線內(nèi)導(dǎo)體半徑為a,外導(dǎo)體半徑為b,內(nèi)外導(dǎo)體間填充的介電常數(shù)為的均勻介質(zhì),求同軸線單位長(zhǎng)度的電容。內(nèi)外導(dǎo)體間的電位差

設(shè)同軸線的內(nèi)、外導(dǎo)體單位長(zhǎng)度帶電量分別為和,應(yīng)用高斯定理可得到內(nèi)外導(dǎo)體間任一點(diǎn)的電場(chǎng)強(qiáng)度為故得同軸線單位長(zhǎng)度的電容為同軸線17

如果充電過(guò)程進(jìn)行得足夠緩慢,就不會(huì)有能量輻射,充電過(guò)程中外加電源所做的總功將全部轉(zhuǎn)換成電場(chǎng)能量,或者說(shuō)電場(chǎng)能量就等于外加電源在此電場(chǎng)建立過(guò)程中所做的總功。

靜電場(chǎng)能量來(lái)源于建立電荷系統(tǒng)的過(guò)程中外源提供的能量。

靜電場(chǎng)最基本的特征是對(duì)電荷有作用力,這表明靜電場(chǎng)具有能量。任何形式的帶電系統(tǒng),都要經(jīng)過(guò)從沒(méi)有電荷分布到某個(gè)最終電荷分布的建立(或充電)過(guò)程。在此過(guò)程中,外加電源必須克服電荷之間的相互作用力而做功。3.1.4靜電場(chǎng)的能量

181.靜電場(chǎng)的能量

設(shè)系統(tǒng)從零開(kāi)始充電,最終帶電量為q、電位為。充電過(guò)程中某一時(shí)刻的電荷量為αq、電位為α。(0≤α≤1)當(dāng)α增加為(α+dα)時(shí),外電源做功為:α

(qdα)。對(duì)α從0到1積分,即得到外電源所做的總功為根據(jù)能量守恒定律,此功也就是電量為q的帶電體具有的電場(chǎng)能量We

,即

對(duì)于電荷體密度為ρ的體分布電荷,體積元dV中的電荷ρdV具有的電場(chǎng)能量為19故體分布電荷的電場(chǎng)能量為對(duì)于面分布電荷,電場(chǎng)能量為對(duì)于多導(dǎo)體組成的帶電系統(tǒng),則有——第i個(gè)導(dǎo)體所帶的電荷——第i個(gè)導(dǎo)體的電位式中:202.電場(chǎng)能量密度

從場(chǎng)的觀點(diǎn)來(lái)看,靜電場(chǎng)的能量分布于電場(chǎng)所在的整個(gè)空間。

電場(chǎng)能量密度:

電場(chǎng)的總能量:積分區(qū)域?yàn)殡妶?chǎng)所在的整個(gè)空間

對(duì)于線性、各向同性介質(zhì),則有21由于體積V外的電荷密度ρ=0,若將上式中的積分區(qū)域擴(kuò)大到整個(gè)場(chǎng)空間,結(jié)果仍然成立。只要電荷分布在有限區(qū)域內(nèi),當(dāng)閉合面S無(wú)限擴(kuò)大時(shí),則有故

推證:ρρ=0S22

例3.1.7

半徑為a的球形空間內(nèi)均勻分布有電荷體密度為ρ的電荷,試求靜電場(chǎng)能量。

解:方法一,利用計(jì)算根據(jù)高斯定理求得電場(chǎng)強(qiáng)度故23方法二:利用計(jì)算先求出電位分布故243.2導(dǎo)電媒質(zhì)中的恒定電場(chǎng)分析

3.2.1恒定電場(chǎng)的基本方程和邊界條件

3.2.2恒定電場(chǎng)與靜電場(chǎng)的比擬

3.2.3漏電導(dǎo)25

由可知,導(dǎo)體中若存在恒定電流,則必有維持該電流的電場(chǎng),雖然導(dǎo)體中產(chǎn)生電場(chǎng)的電荷作定向運(yùn)動(dòng),但導(dǎo)體中的電荷分布是一種不隨時(shí)間變化的恒定分布,這種恒定分布電荷產(chǎn)生的電場(chǎng)稱為恒定電場(chǎng)。恒定電場(chǎng)與靜電場(chǎng)的重要區(qū)別:(1)恒定電場(chǎng)可以存在于導(dǎo)體內(nèi)部。(2)恒定電場(chǎng)中有電場(chǎng)能量的損耗,要維持導(dǎo)體中的恒定電流,就必須有外加電源來(lái)不斷補(bǔ)充被損耗的電場(chǎng)能量。3.2.1恒定電場(chǎng)的基本方程和邊界條件261.基本方程

恒定電場(chǎng)的基本方程為微分形式:積分形式:

恒定電場(chǎng)的基本場(chǎng)矢量是電流密度和電場(chǎng)強(qiáng)度

恒定電場(chǎng)的電位函數(shù)由線性各向同性導(dǎo)電媒質(zhì)的本構(gòu)關(guān)系若媒質(zhì)是均勻的,則均勻?qū)щ娒劫|(zhì)中沒(méi)有體分布電荷272.恒定電場(chǎng)的邊界條件媒質(zhì)2媒質(zhì)1場(chǎng)矢量的邊界條件即即導(dǎo)電媒質(zhì)分界面上的電荷面密度場(chǎng)矢量的折射關(guān)系28電位的邊界條件恒定電場(chǎng)同時(shí)存在于導(dǎo)體內(nèi)部和外部,在導(dǎo)體表面上的電場(chǎng)既有法向分量又有切向分量,電場(chǎng)并不垂直于導(dǎo)體表面,因而導(dǎo)體表面不是等位面;說(shuō)明:29媒質(zhì)2媒質(zhì)1媒質(zhì)2媒質(zhì)1如2>>1、且2≠90°,則1=0,即電場(chǎng)線近似垂直于與良導(dǎo)體表面。此時(shí),良導(dǎo)體表面可近似地看作為等位面;

若媒質(zhì)1為理想介質(zhì),即1=0,則

J1=0,故J2n=0且

E2n=0,即導(dǎo)體中的電流和電場(chǎng)與分界面平行。場(chǎng)矢量的折射關(guān)系30

例3.2.1一個(gè)有兩層介質(zhì)的平行板電容器,其參數(shù)分別為1、1和2、2,外加電壓U。求介質(zhì)面上的自由電荷密度。

解:極板是理想導(dǎo)體,為等位面,電流沿z方向。31

例3.2.2

填充有兩層介質(zhì)的同軸電纜,內(nèi)導(dǎo)體半徑為a,外導(dǎo)體半徑為c,介質(zhì)的分界面半徑為b。兩層介質(zhì)的介電常數(shù)為1和2

、電導(dǎo)率為

1和2

。設(shè)內(nèi)導(dǎo)體的電壓為U0

,外導(dǎo)體接地。求:(1)兩導(dǎo)體之間的電流密度和電場(chǎng)強(qiáng)度分布;(2)介質(zhì)分界面上的自由電荷面密度。外導(dǎo)體內(nèi)導(dǎo)體介質(zhì)2介質(zhì)132

(1)設(shè)同軸電纜中單位長(zhǎng)度的徑向電流為I,則由可得電流密度介質(zhì)中的電場(chǎng)

解電流由內(nèi)導(dǎo)體流向外導(dǎo)體,在分界面上只有法向分量,所以電流密度成軸對(duì)稱分布。可先假設(shè)電流為I,由求出電流密度的表達(dá)式,然后求出和,再由確定出電流I。33故兩種介質(zhì)中的電流密度和電場(chǎng)強(qiáng)度分別為由于于是得到34(2)由可得,介質(zhì)1內(nèi)表面的電荷面密度為介質(zhì)2外表面的電荷面密度為兩種介質(zhì)分界面上的電荷面密度為353.2.2恒定電場(chǎng)與靜電場(chǎng)的比擬

如果兩種場(chǎng),在一定條件下,場(chǎng)方程有相同的形式,邊界形狀相同,邊界條件等效,則其解也必有相同的形式,求解這兩種場(chǎng)分布必然是同一個(gè)數(shù)學(xué)問(wèn)題。只需求出一種場(chǎng)的解,就可以用對(duì)應(yīng)的物理量作替換而得到另一種場(chǎng)的解。這種求解場(chǎng)的方法稱為比擬法。36恒定電場(chǎng)與靜電場(chǎng)的比擬基本方程靜電場(chǎng)(區(qū)域)本構(gòu)關(guān)系位函數(shù)邊界條件恒定電場(chǎng)(電源外)對(duì)應(yīng)物理量靜電場(chǎng)恒定電場(chǎng)37

工程上,常在電容器兩極板之間、同軸電纜的芯線與外殼之間,填充不導(dǎo)電的材料作電絕緣。這些絕緣材料的電導(dǎo)率遠(yuǎn)遠(yuǎn)小于金屬材料的電導(dǎo)率,但畢竟不為零,因而當(dāng)在電極間加上電壓U時(shí),必定會(huì)有微小的漏電流J存在。漏電流與電壓之比為漏電導(dǎo),即其倒數(shù)稱為絕緣電阻,即3.2.3漏電導(dǎo)38(1)假定兩電極間的電流為I;計(jì)算兩電極間的電流密度矢量J;由J=E

得到E

;

由,求出兩導(dǎo)體間的電位差;(5)求比值,即得出所求電導(dǎo)。

計(jì)算電導(dǎo)的方法一:

計(jì)算電導(dǎo)的方法二:

(1)假定兩電極間的電位差為U;

(2)計(jì)算兩電極間的電位分布

;

(3)由得到E;(4)由J=E

得到J;(5)由 ,求出兩導(dǎo)體間電流;

(6)求比值,即得出所求電導(dǎo)。

計(jì)算電導(dǎo)的方法三:靜電比擬法:G→C,σ→ε39例3.2.3求同軸電纜的絕緣電阻。設(shè)內(nèi)外的半徑分別為a、b,長(zhǎng)度為l

,其間媒質(zhì)的電導(dǎo)率為σ、介電常數(shù)為ε。解:直接用恒定電場(chǎng)的計(jì)算方法電導(dǎo)絕緣電阻則設(shè)由內(nèi)導(dǎo)體流向外導(dǎo)體的電流為I

。40方程通解為

例3.2.4

在一塊厚度為h

的導(dǎo)電板上,由兩個(gè)半徑為r1和r2的圓弧和夾角為

0的兩半徑割出的一段環(huán)形導(dǎo)電媒質(zhì),如圖所示。計(jì)算沿方向的兩電極之間的電阻。設(shè)導(dǎo)電媒質(zhì)的電導(dǎo)率為σ。解:設(shè)在沿方向的兩電極之間外加電壓U0,則電流沿

方向流動(dòng),而且電流密度是隨

變化的。但容易判定電位只是變量的函數(shù),因此電位函數(shù)滿足一維拉普拉斯方程代入邊界條件可以得到環(huán)形導(dǎo)電媒質(zhì)塊r1hr20σ41電流密度兩電極之間的電流故沿方向的兩電極之間的電阻為所以423.3.1恒定磁場(chǎng)的基本方程和邊界條件3.3.2

恒定磁場(chǎng)的矢量磁位和標(biāo)量磁位3.3.3

電感3.3.4

恒定磁場(chǎng)的能量3.3.5

磁場(chǎng)力

3.3恒定磁場(chǎng)分析43微分形式:1.基本方程2.邊界條件本構(gòu)關(guān)系:或若分界面上不存在面電流,即JS=0,則積分形式:或3.3.1恒定磁場(chǎng)的基本方程和邊界條件44矢量磁位的定義磁矢位的任意性與電位一樣,磁矢位也不是惟一確定的,它加上任意一個(gè)標(biāo)量的梯度以后,仍然表示同一個(gè)磁場(chǎng),即由即恒定磁場(chǎng)可以用一個(gè)矢量函數(shù)的旋度來(lái)表示。磁矢位的任意性是因?yàn)橹灰?guī)定了它的旋度,沒(méi)有規(guī)定其散度造成的。為了得到確定的A,可以對(duì)A的散度加以限制,在恒定磁場(chǎng)中通常規(guī)定,并稱為庫(kù)侖規(guī)范。1.恒定磁場(chǎng)的矢量磁位矢量磁位或稱磁矢位

3.3.2恒定磁場(chǎng)的矢量磁位和標(biāo)量磁位45磁矢位的微分方程在無(wú)源區(qū):矢量泊松方程矢量拉普拉斯方程磁矢位的表達(dá)式46磁矢位的邊界條件(可以證明滿足)對(duì)于面電流和細(xì)導(dǎo)線電流回路,磁矢位分別為利用磁矢位計(jì)算磁通量:細(xì)線電流:面電流:由此可得出47

3.3.1

求小圓環(huán)電流回路的遠(yuǎn)區(qū)矢量磁位與磁場(chǎng)。小圓形回路的半徑為a

,回路中的電流為I

。

解如圖所示,由于具有軸對(duì)稱性,矢量磁位和磁場(chǎng)均與無(wú)關(guān),計(jì)算xOz平面上的矢量磁位與磁場(chǎng)將不失一般性。小圓環(huán)電流aIxzyrRθIPO48對(duì)于遠(yuǎn)區(qū),有r>>a

,所以由于在=0面上,所以上式可寫(xiě)成于是得到49式中S=πa

2是小圓環(huán)的面積。載流小圓環(huán)可看作磁偶極子,為磁偶極子的磁矩(或磁偶極矩),則或50

解:先求長(zhǎng)度為2L的直線電流的磁矢位。電流元到點(diǎn)的距離。則

例3.3.2

求無(wú)限長(zhǎng)線電流I

的磁矢位,設(shè)電流沿+z方向流動(dòng)。與計(jì)算無(wú)限長(zhǎng)線電荷的電位一樣,令可得到無(wú)限長(zhǎng)線電流的磁矢位xyzL-L512.恒定磁場(chǎng)的標(biāo)量磁位一般情況下,恒定磁場(chǎng)只能引入磁矢位來(lái)描述,但在無(wú)傳導(dǎo)電流(J=0)的空間中,則有即在無(wú)傳導(dǎo)電流(J=0)的空間中,可以引入一個(gè)標(biāo)量位函數(shù)來(lái)描述磁場(chǎng)。標(biāo)量磁位的引入標(biāo)量磁位或磁標(biāo)位521.磁通與磁鏈

3.3.3電感單匝線圈形成的回路的磁鏈定義為穿過(guò)該回路的磁通量多匝線圈形成的導(dǎo)線回路的磁鏈定義為所有線圈的磁通總和CI細(xì)回路粗導(dǎo)線構(gòu)成的回路,磁鏈分為兩部分:一部分是粗導(dǎo)線包圍的、磁力線不穿過(guò)導(dǎo)體的外磁通量o;另一部分是磁力線穿過(guò)導(dǎo)體、只有粗導(dǎo)線的一部分包圍的內(nèi)磁通量i。iCIo粗回路53設(shè)回路C中的電流為I

,所產(chǎn)生的磁場(chǎng)與回路C交鏈的磁鏈為,則磁鏈與回路C中的電流I

有正比關(guān)系,其比值稱為回路C的自感系數(shù),簡(jiǎn)稱自感。2.自感自感只與回路的幾何形狀、尺寸以及周圍的磁介質(zhì)有關(guān),與電流無(wú)關(guān)。

自感的特點(diǎn):——外自感——內(nèi)自感;粗導(dǎo)體回路的自感:L=Li+Lo54

解:先求內(nèi)導(dǎo)體的內(nèi)自感。設(shè)同軸線中的電流為I,由安培環(huán)路定理穿過(guò)沿軸線單位長(zhǎng)度的矩形面積元dS=d的磁通為

例3.3.4

求同軸線單位長(zhǎng)度的自感。設(shè)內(nèi)導(dǎo)體半徑為a,外導(dǎo)體厚度可忽略不計(jì),其半徑為b,空氣填充。得與dΦi交鏈的電流為則與dΦi相應(yīng)的磁鏈為55因此內(nèi)導(dǎo)體中總的內(nèi)磁鏈為故單位長(zhǎng)度的內(nèi)自感為再求內(nèi)、外導(dǎo)體間的外自感。則故單位長(zhǎng)度的外自感為單位長(zhǎng)度的總自感為56

例3.3.5計(jì)算平行雙線傳輸線單位長(zhǎng)度的自感。設(shè)導(dǎo)線的半徑為a,兩導(dǎo)線的間距為D,且D>>a。導(dǎo)線及周圍媒質(zhì)的磁導(dǎo)率為μ0。穿過(guò)兩導(dǎo)線之間沿軸線方向?yàn)閱挝婚L(zhǎng)度的面積的外磁鏈為

設(shè)兩導(dǎo)線流過(guò)的電流為I

。由于D>>a

,故可近似地認(rèn)為導(dǎo)線中的電流是均勻分布的。應(yīng)用安培環(huán)路定理和疊加原理,可得到兩導(dǎo)線之間的平面上任一點(diǎn)P

的磁感應(yīng)強(qiáng)度為PII57于是得到平行雙線傳輸線單位長(zhǎng)度的外自感兩根導(dǎo)線單位長(zhǎng)度的內(nèi)自感為故得到平行雙線傳輸線單位長(zhǎng)度的自感為58

對(duì)兩個(gè)彼此鄰近的閉合回路C1和回路C2

,電流I1與回路C1

和C2

都存在磁鏈,與回路C2交鏈的磁鏈12也與I1成正比,其比例系數(shù)稱為回路C1對(duì)回路C2的互感系數(shù),簡(jiǎn)稱互感。

3.互感同理,回路C2對(duì)回路C1

的互感為C1C2I1I2Ro59互感只與回路的幾何形狀、尺寸、兩回路的相對(duì)位置以及周圍磁介質(zhì)有關(guān),而與電流無(wú)關(guān)。滿足互易關(guān)系,即M12=M21互感的特點(diǎn):604.紐曼公式如圖所示的兩個(gè)回路C1和回路C2

,回路C1中的電流I1在回路C2上的任一點(diǎn)產(chǎn)生的矢量磁位回路C1中的電流I1產(chǎn)生的磁場(chǎng)與回路C2交鏈的磁鏈為C1C2I1I2Ro紐曼公式同理故得61由圖中可知長(zhǎng)直導(dǎo)線與三角形回路穿過(guò)三角形回路面積的磁通為

設(shè)長(zhǎng)直導(dǎo)線中的電流為I,根據(jù)安培環(huán)路定理,得到

例3.3.6

如圖所示,長(zhǎng)直導(dǎo)線與三角形導(dǎo)體回路共面,求它們之間的互感。62因此故長(zhǎng)直導(dǎo)線與三角形導(dǎo)體回路的互感為63

例3.3.7

如圖所示,兩個(gè)互相平行且共軸的圓形線圈C1和C2,半徑分別為a1和a2,中心相距為d

。求它們之間的互感。于是有

解利用紐曼公式來(lái)計(jì)算,則有兩個(gè)平行且共軸的線圈式中θ=2-1為與之間的夾角,dl1=a1d1、dl2=a1d2,且64若d>>a1,則于是一般情況下,上述積分只能用橢圓積分來(lái)表示。但是若d>>a1或d>>a2時(shí),可進(jìn)行近似計(jì)算。653.3.4恒定磁場(chǎng)的能量1.

磁場(chǎng)能量在恒定磁場(chǎng)建立過(guò)程中,電源克服感應(yīng)電動(dòng)勢(shì)做功所供給的能量,就全部轉(zhuǎn)化成磁場(chǎng)能量。電流回路在恒定磁場(chǎng)中受到磁場(chǎng)力的作用而運(yùn)動(dòng),表明恒定磁場(chǎng)具有能量。磁場(chǎng)能量是在建立電流的過(guò)程中,由電源供給的。當(dāng)電流從零開(kāi)始增加時(shí),回路中的感應(yīng)電動(dòng)勢(shì)要阻止電流的增加,因而必須有外加電壓克服回路中的感應(yīng)電動(dòng)勢(shì)。假定建立并維持恒定電流時(shí),沒(méi)有熱損耗。假定在恒定電流建立過(guò)程中,電流的變化足夠緩慢,沒(méi)有輻射損耗。66

設(shè)回路從零開(kāi)始充電,最終的電流為

I、交鏈的磁鏈為。在時(shí)刻t的電流為i=αI、磁鏈為ψ=α。(0≤α≤1)根據(jù)能量守恒定律,此功也就是電流為I

的載流回路具有的磁場(chǎng)能量Wm,即對(duì)α從0到1積分,即得到外電源所做的總功為外加電壓應(yīng)為所做的功當(dāng)α增加為(α+dα)時(shí),回路中的感應(yīng)電動(dòng)勢(shì):67

對(duì)于N個(gè)載流回路,則有對(duì)于體分布電流,則有例如,對(duì)于兩個(gè)電流回路C1和回路C2

,有回路C2的自有能回路C1的自有能C1和C2的互能682.磁場(chǎng)能量密度

從場(chǎng)的觀點(diǎn)來(lái)看,磁場(chǎng)能量分布于磁場(chǎng)所在的整個(gè)空間。

磁場(chǎng)能量密度:

磁場(chǎng)的總能量:積分區(qū)域?yàn)殡妶?chǎng)所在的整個(gè)空間

對(duì)于線性、各向同性介質(zhì),則有69若電流分布在有限區(qū)域內(nèi),當(dāng)閉合面S無(wú)限擴(kuò)大時(shí),則有故

推證:S70

例3.3.8

同軸電纜的內(nèi)導(dǎo)體半徑為a,外導(dǎo)體的內(nèi)、外半徑分別為

b和c,如圖所示。導(dǎo)體中通有電流I

,試求同軸電纜中單位長(zhǎng)度儲(chǔ)存的磁場(chǎng)能量與自感。

解:由安培環(huán)路定理,得71三個(gè)區(qū)域單位長(zhǎng)度內(nèi)的磁場(chǎng)能量分別為72單位長(zhǎng)度內(nèi)總的磁場(chǎng)能量為單位長(zhǎng)度的總自感內(nèi)導(dǎo)體的內(nèi)自感內(nèi)外導(dǎo)體間的外自感外導(dǎo)體的內(nèi)自感733.4靜態(tài)場(chǎng)的邊值問(wèn)題及解的惟一性定理

討論內(nèi)容

3.4.1邊值問(wèn)題的類型

3.4.2惟一性定理

邊值問(wèn)題:在給定的邊界條件下,求解位函數(shù)的泊松方程或拉普拉斯方程743.4.1邊值問(wèn)題的類型

靜態(tài)場(chǎng)的問(wèn)題通常分為兩大類:分布型:已知電荷分布,直接求常區(qū)的電場(chǎng)強(qiáng)度和電位;邊值型:已知邊界上的電位、電荷等條件,求解場(chǎng)區(qū)的電場(chǎng)與電位。求解方法:解析法:直接積分法、分離變量法、鏡像法等;數(shù)值法:有限差分法、有限元法、邊界元法。75已知場(chǎng)域邊界面上的位函數(shù)值,即

第一類邊值問(wèn)題(或狄里赫利問(wèn)題)已知場(chǎng)域邊界面上的位函數(shù)的法向?qū)?shù)值,即已知場(chǎng)域一部分邊界面上的位函數(shù)值,而另一部分邊界面上則已知位函數(shù)的法向?qū)?shù)值,即

第三類邊值問(wèn)題(或混合邊值問(wèn)題)

第二類邊值問(wèn)題(或紐曼問(wèn)題)76自然邊界條件(無(wú)界空間)周期邊界條件銜接條件不同媒質(zhì)分界面上的邊界條件,如77例:(第一類邊值問(wèn)題)(第三類邊值問(wèn)題)例:78在場(chǎng)域V的邊界面S上給定或的值,則泊松方程或拉普拉斯方程在場(chǎng)域V具有惟一值。3.4.2惟一性定理

惟一性定理的重要意義給出了靜態(tài)場(chǎng)邊值問(wèn)題具有惟一解的條件為靜態(tài)場(chǎng)邊值問(wèn)題的各種求解方法提供了理論依據(jù)為求解結(jié)果的正確性提供了判據(jù)

惟一性定理的表述79

惟一性定理的證明反證法:假設(shè)解不惟一,則有兩個(gè)位函數(shù)和在場(chǎng)域V內(nèi)滿足同樣的方程,即且在邊界面S上有令,則在場(chǎng)域V內(nèi)且在邊界面S上滿足同樣的邊界條件?;蚧?0由格林第一恒等式可得到對(duì)于第一類邊界條件:對(duì)于第二類邊界條件:若和取同一點(diǎn)Q為參考點(diǎn),則對(duì)于第三類邊界條件:81

3.5.1鏡像法的基本原理

3.5.2接地導(dǎo)體平面的鏡像

3.5.3導(dǎo)體球面的鏡像

3.5.4導(dǎo)體圓柱面的鏡像

3.5.5點(diǎn)電荷與無(wú)限大電介質(zhì)平面的鏡像

3.5.6線電流與無(wú)限大磁介質(zhì)平面的鏡像

3.5鏡像法82當(dāng)有電荷存在于導(dǎo)體或介質(zhì)表面附近時(shí),導(dǎo)體和介質(zhì)表面會(huì)出現(xiàn)感應(yīng)電荷或極化電荷,而感應(yīng)電荷或極化電荷將影響場(chǎng)的分布。非均勻感應(yīng)電荷產(chǎn)生的電位很難求解,可以用等效電荷的電位替代1.

問(wèn)題的提出幾個(gè)實(shí)例接地導(dǎo)體板附近有一個(gè)點(diǎn)電荷,如圖所示。qq′非均勻感應(yīng)電荷等效電荷3.5.1鏡像法的基本原理83接地導(dǎo)體球附近有一個(gè)點(diǎn)電荷,如圖。非均勻感應(yīng)電荷產(chǎn)生的電位很難求解,可以用等效電荷的電位替代接地導(dǎo)體柱附近有一個(gè)線電荷。情況與上例類似,但等效電荷為線電荷。q非均勻感應(yīng)電荷q′等效電荷

結(jié)論:所謂鏡像法是將不均勻電荷分布的作用等效為點(diǎn)電荷或線電荷的作用。

問(wèn)題:這種等效電荷是否存在?這種等效是否合理?842.鏡像法的原理用位于場(chǎng)域邊界外虛設(shè)的較簡(jiǎn)單的鏡像電荷分布來(lái)等效替代該邊界上未知的較為復(fù)雜的電荷分布,從而將原含該邊界的非均勻媒質(zhì)空間變換成無(wú)限大單一均勻媒質(zhì)的空間,使分析計(jì)算過(guò)程得以明顯簡(jiǎn)化的一種間接求解法。

在導(dǎo)體形狀、幾何尺寸、帶電狀況和媒質(zhì)幾何結(jié)構(gòu)、特性不變的前提條件下,根據(jù)惟一性定理,只要找出的解答滿足在同一泛定方程下問(wèn)題所給定的邊界條件,那就是該問(wèn)題的解答,并且是惟一的解答。鏡像法正是巧妙地應(yīng)用了這一基本原理、面向多種典型結(jié)構(gòu)的工程電磁場(chǎng)問(wèn)題所構(gòu)成的一種有效的解析求解法。3.

鏡像法的理論基礎(chǔ)——解的惟一性定理85像電荷的個(gè)數(shù)、位置及其電量大小——“三要素”。4.鏡像法應(yīng)用的關(guān)鍵點(diǎn)5.

確定鏡像電荷的兩條原則

等效求解的“有效場(chǎng)域”。

鏡像電荷的確定

像電荷必須位于所求解的場(chǎng)區(qū)域以外的空間中。

像電荷的個(gè)數(shù)、位置及電荷量的大小以滿足所求解的場(chǎng)區(qū)域的邊界條件來(lái)確定。861.點(diǎn)電荷對(duì)無(wú)限大接地導(dǎo)體平面的鏡像滿足原問(wèn)題的邊界條件,所得的結(jié)果是正確的。3.5.2接地導(dǎo)體平面的鏡像鏡像電荷電位函數(shù)因z=0時(shí),有效區(qū)域qq87上半空間(z≥0)的電位函數(shù)q

導(dǎo)體平面上的感應(yīng)電荷密度為導(dǎo)體平面上的總感應(yīng)電荷為882.線電荷對(duì)無(wú)限大接地導(dǎo)體平面的鏡像鏡像線電荷:滿足原問(wèn)題的邊界條件,所得的解是正確的。電位函數(shù)當(dāng)z=0時(shí),有效區(qū)域893.點(diǎn)電荷對(duì)相交半無(wú)限大接地導(dǎo)體平面的鏡像如圖所示,兩個(gè)相互垂直相連的半無(wú)限大接地導(dǎo)體平板,點(diǎn)電荷q位于(d1,d2)處。顯然,q1對(duì)平面2以及q2對(duì)平面1均不能滿足邊界條件。對(duì)于平面1,有鏡像電荷q1=-q,位于(-d1,d2)對(duì)于平面2,有鏡像電荷q2=-q,位于(d1,-d2)只有在(-d1,-d2)處再設(shè)置一鏡像電荷q3=q,所有邊界條件才能得到滿足。電位函數(shù)d11qd22RR1R2R3q1d1d2d2q2d1q3d2d190

例3.5.1

一個(gè)點(diǎn)電荷q與無(wú)限大導(dǎo)體平面距離為d,如果把它移至無(wú)窮遠(yuǎn)處,需要做多少功?

解:移動(dòng)電荷q時(shí),外力需要克服電場(chǎng)力做功,而電荷q受的電場(chǎng)力來(lái)源于導(dǎo)體板上的感應(yīng)電荷??梢韵惹箅姾蓂移至無(wú)窮遠(yuǎn)時(shí)電場(chǎng)力所做的功。q'qx=∞0d-d由鏡像法,感應(yīng)電荷可以用像電荷

替代。當(dāng)電荷q移至x時(shí),像電荷

應(yīng)位于-x,則像電荷產(chǎn)生的電場(chǎng)強(qiáng)度913.5.3導(dǎo)體球面的鏡像1.點(diǎn)電荷對(duì)接地導(dǎo)體球面的鏡像球面上的感應(yīng)電荷可用鏡像電荷q'來(lái)等效。q'

應(yīng)位于導(dǎo)體球內(nèi)(顯然不影響原方程),且在點(diǎn)電荷q與球心的連線上,距球心為d'。則有如圖所示,點(diǎn)電荷q位于半徑為a的接地導(dǎo)體球外,距球心為d。方法:利用導(dǎo)體球面上電位為零確定

和q′。

問(wèn)題:

PqarRdqPaq'rR'Rdd'92令r=a,由球面上電位為零,即=0,得此式應(yīng)在整個(gè)球面上都成立。條件:若像電荷的位置像電荷的電量常數(shù)qP

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論