數(shù)據(jù)挖掘應(yīng)用課件_第1頁(yè)
數(shù)據(jù)挖掘應(yīng)用課件_第2頁(yè)
數(shù)據(jù)挖掘應(yīng)用課件_第3頁(yè)
數(shù)據(jù)挖掘應(yīng)用課件_第4頁(yè)
數(shù)據(jù)挖掘應(yīng)用課件_第5頁(yè)
已閱讀5頁(yè),還剩39頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

數(shù)據(jù)挖掘應(yīng)用CRM顧客生命周期壽命盈利

獲取消費(fèi)者保持消費(fèi)者消費(fèi)者分析和恢復(fù)收入支出壽命CustomeridentificationCRMbeginswithcustomeridentification.Thisphaseinvolvestargetingthepopulationwhoaremostlikelytobecomecustomersormostprofitabletothecompany.Italsoinvolvesanalyzingcustomerswhoarebeinglosttothecompetitionandhowtheycanbewonback.Elementsforcustomeridentificationincludetargetcustomeranalysisandcustomersegmentation.CustomerattractionOrganizationscandirecteffortandresourcesintoattractingthetargetcustomersegments.Directmarketingisapromotionprocesswhichmotivatescustomerstoplaceordersthroughvariouschannels.directmailorcoupon目標(biāo)營(yíng)銷客戶流失分析CustomerdevelopmentElementsofcustomerdevelopmentincludecustomerlifetimevalueanalysis,up/crosssellingandmarketbasketanalysis.Customerlifetimevalueanalysisisdefinedasthepredictionofthetotalnetincomeacompanycanexpectfromacustomer.Up/Crosssellingreferstopromotionactivitieswhichaimataugmentingthenumberofassociatedorcloselyrelatedservicesthatacustomeruseswithinafirm.Marketbasketanalysisaimsatmaximizingthecustomertransactionintensityandvaluebyrevealingregularitiesinthepurchasebehaviourofcustomers.Personalizedrecommendationsystems

Informationfilteringandrecommendationrule-basedfiltering,content-basedfiltering,andcollaborativefiltering.Rule-basedfilteringusespre-specifiedif-thenrulestoselectrelevantinformationforrecommendation.Content-basedfilteringuseskeywordsorotherproduct-relatedattributestomakerecommendations.Collaborativefilteringusespreferencesofsimilarusersinthesamereferencegroupasabasisforrecommendation.TypicalpersonalizationprocessunderstandingcustomersthroughprodeliveringpersonalizedofferingbasedontheknowledgeabouttheproductandthecustomermeasuringpersonalizationimpactInadequateinformationinIROnepossiblesolutionforovercomingtheproblemistoexpandthequerybyaddingmoresemanticinformationtobetterdescribetheconcepts.Relevancefeedbacksandknowledgestructureareusedtoaddappropriatetermstoexpandthequeries.Relevancefeedbacksareinformationontheitemsselectedbytheuserfromtheoutputofpreviousqueries.Apersonalizedknowledgerecommendationsystem

Asemantic-expansionapproachtobuildtheuserproanalyzingdocumentspreviouslyreadbytheperson.Thesemantic-expansionapproachthatintegratessemanticinformationforspreadingexpansionandcontent-basedfilteringfordocumentrecommendation.Asamplesemantic-expansionnetworkExperimentalresultsAnempiricalstudyusingmasterthesesintheNationalCentrallibraryinTaiwanshowsthatthesemantic-expansionapproachoutperformsthetraditionalkeywordapproachincatchinguserinterests.自適應(yīng)構(gòu)件檢索構(gòu)件檢索是構(gòu)件庫(kù)研究中的重要問題,有效的構(gòu)件檢索機(jī)制能夠降低構(gòu)件復(fù)用成本。構(gòu)件的復(fù)用者并不是構(gòu)件的設(shè)計(jì)者或構(gòu)件庫(kù)的管理員,在檢索構(gòu)件時(shí)對(duì)構(gòu)件庫(kù)的描述理解不充分,導(dǎo)致難以給出完整和精確的檢索需求。用戶選擇構(gòu)件的結(jié)果反映其真實(shí)需求,如果能夠從用戶的檢索行為以及用戶對(duì)檢索結(jié)果的反饋中推斷出用戶的非精確檢索條件與用戶實(shí)際需要的精確檢索條件之間內(nèi)在聯(lián)系的模式,就可以提高系統(tǒng)的查準(zhǔn)率。基于關(guān)聯(lián)挖掘的自適應(yīng)構(gòu)件檢索把關(guān)聯(lián)規(guī)則挖掘方法引入構(gòu)件檢索,從用戶檢索行為以及反饋中挖掘出非精確檢索條件與精確檢索結(jié)果之間的關(guān)聯(lián)規(guī)則,從而調(diào)整檢索機(jī)制,提高構(gòu)件檢索的查準(zhǔn)率。實(shí)例{windows}{windows,SQLServer}{Linux}{Linux,Mysql}{金融}{金融,SQLServer}{windows,金融}{windows,金融,SQLServer}零部件供應(yīng)商選擇如何選擇供應(yīng)商不僅決定了產(chǎn)品的質(zhì)量和成本,也決定了產(chǎn)品的銷售價(jià)格、維護(hù)費(fèi)用和用戶滿意程度。選擇供應(yīng)商一般以滿足時(shí)間約束的條件下最小化物流成本為目標(biāo),沒有考慮零部件故障率與不同地域環(huán)境之間的相關(guān)性?;陉P(guān)聯(lián)規(guī)則的零部件供應(yīng)商選擇使用關(guān)聯(lián)規(guī)則挖掘算法,從產(chǎn)品維修記錄中,尋找不同供應(yīng)商提供的產(chǎn)品零部件及其組合在不同地域的頻繁故障模式。在生成供應(yīng)商選擇和配送方案過程中,利用這些頻繁故障模式,選擇合適的零部件供應(yīng)商組合,達(dá)到物流成本與產(chǎn)品維護(hù)成本的聯(lián)合優(yōu)化。采用決策樹挖掘出人員選拔規(guī)則CHAIDDecisiontreeforpredictingjobperformanceImprovingeducationImprovingteachingandlearningInstructorscanhavetroubleidentifyingtheirrealdifficultiesinlearning.Basedonthestudents’testingrecords,thesystemworkstoidentifyandfindthoseproblems,andthencomesupwithitssuggestionsfordesigningnewteachingstrategies.Assistteacherstoidentifystudents’specificdifficultiesandweaknessesinlearning.Helpsthestudenttofindouthisorherweakpointsinlearningandoffersimprovementrecommendations.ESLrecommenderteachingandlearningRight/wronganswerstatisticaltableForeverystudent,thesystemcreatesaright/wronganswerstatisticaltable:awronganswerisrepresentedby1andarightanswerby0.Summarytableofstudents’wronganswersTheright/wronganswerstatisticaltablesforrespectivestudentsareintegratedinasummarytableofstudents’wronganswers,andthesumvaluesinthetablearethenrankedindescendingordersoastoshowthedescendingdegreesofweaknessesthestudentshavecollectively.HierarchicalclusteringHierarchicalclusteringalgorithmisthenappliedtodatacollectedtosegmentthestudentsintoacertainnumberofclusters,orcategories,eachofwhichincludesstudentssharingthesameorsimilarcharacteristics.Allstudents’right/wronganswerstatisticaltablesClusteringanalysisAclusteringanalysisismadeofthedatainAllstudents’right/wronganswerstatisticaltables.Itisevidentthatthestudentswhosenumbersareenclosedinthefollowingseparateparenthesesbelongtodifferentclustersrespectively:(9,15,6,17,13,19,14,5);(22,23,4,3,21,11,24,20,7,1);(12,18,2,8,25,10,16).搜索引擎優(yōu)化搜索引擎優(yōu)化Theyareusuallynotsearchenginesbythemselves.Theclusteringengineusesoneormoretraditionalsearchenginestogatheranumberofresults;then,itdoesaformofpost-processingontheseresultsinordertoclusterthemintomeaningfulgroups.Thepost-processingstepanalyzessnippets,i.e.,shortdocumentabstractsreturnedbythesearchengine,usuallycontainingwordsaroundquerytermoccurrences.研討題閱讀后面參考文獻(xiàn),分析案例使用的數(shù)據(jù)挖掘方法以及解決的主要問題。結(jié)合自己的實(shí)踐,說(shuō)明所在崗位對(duì)商務(wù)智能的需求(針對(duì)軟件工程碩士)。典型參考文獻(xiàn)(1)Chen-FuChien,Li-FeiChen.Dataminingtoimprovepersonnelselectionandenhancehumancapital:acasestudyinhigh-technologyindustry.ExpertSystemswithApplication,2008,(34):280-290Cristo′balRomero,Sebastia′nVentura,EnriqueGarc?′a.Dataminingincoursemanagementsystems:Moodlecasestudyandtutorial.Computers&Education51(2008)368–384Yang,C.C.etal.,Improvingschedulingofemergencyphysiciansusingdatamininganalysis,ExpertSystemswithApplications(2008),doi:10.1016/j.eswa.2008.02.069JangHeeLee,SangChanPark.Intelligentprofitablecustomerssegmentationsystembasedonbusinessintelligencetools.ExpertSystemswithApplications29(2005):145–152Chih-MingChen,Ying-LingHsieh,Shih-HsunHsu.Mininglearnerproassociationruleforweb-basedlearningdiagnosis.ExpertSystemswithApplications33(2007)6–22Bong-HorngVhu,Ming-ShianTsai,Cheng-SeenHo.Towardahybriddataminingmodelforcusterretention.Knowledge-BasedSystems20(2007)703–718DanielaGrigoria,FabioCasatib,MaluCastellanos,etal.Businessprocessintelligence.ComputersinIndustry53(2004)321–343DursunDelen,ChristieFuller,CharlesMcCann.Analysisofhealthcarecoverage:Adataminingapproach.Delen,D.etal.,Analysisofhealthcarecoverage:Adataminingapproach,ExpertSystems

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論