版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
數(shù)據(jù)挖掘應(yīng)用CRM顧客生命周期壽命盈利
獲取消費(fèi)者保持消費(fèi)者消費(fèi)者分析和恢復(fù)收入支出壽命CustomeridentificationCRMbeginswithcustomeridentification.Thisphaseinvolvestargetingthepopulationwhoaremostlikelytobecomecustomersormostprofitabletothecompany.Italsoinvolvesanalyzingcustomerswhoarebeinglosttothecompetitionandhowtheycanbewonback.Elementsforcustomeridentificationincludetargetcustomeranalysisandcustomersegmentation.CustomerattractionOrganizationscandirecteffortandresourcesintoattractingthetargetcustomersegments.Directmarketingisapromotionprocesswhichmotivatescustomerstoplaceordersthroughvariouschannels.directmailorcoupon目標(biāo)營銷客戶流失分析CustomerdevelopmentElementsofcustomerdevelopmentincludecustomerlifetimevalueanalysis,up/crosssellingandmarketbasketanalysis.Customerlifetimevalueanalysisisdefinedasthepredictionofthetotalnetincomeacompanycanexpectfromacustomer.Up/Crosssellingreferstopromotionactivitieswhichaimataugmentingthenumberofassociatedorcloselyrelatedservicesthatacustomeruseswithinafirm.Marketbasketanalysisaimsatmaximizingthecustomertransactionintensityandvaluebyrevealingregularitiesinthepurchasebehaviourofcustomers.Personalizedrecommendationsystems
Informationfilteringandrecommendationrule-basedfiltering,content-basedfiltering,andcollaborativefiltering.Rule-basedfilteringusespre-specifiedif-thenrulestoselectrelevantinformationforrecommendation.Content-basedfilteringuseskeywordsorotherproduct-relatedattributestomakerecommendations.Collaborativefilteringusespreferencesofsimilarusersinthesamereferencegroupasabasisforrecommendation.TypicalpersonalizationprocessunderstandingcustomersthroughprodeliveringpersonalizedofferingbasedontheknowledgeabouttheproductandthecustomermeasuringpersonalizationimpactInadequateinformationinIROnepossiblesolutionforovercomingtheproblemistoexpandthequerybyaddingmoresemanticinformationtobetterdescribetheconcepts.Relevancefeedbacksandknowledgestructureareusedtoaddappropriatetermstoexpandthequeries.Relevancefeedbacksareinformationontheitemsselectedbytheuserfromtheoutputofpreviousqueries.Apersonalizedknowledgerecommendationsystem
Asemantic-expansionapproachtobuildtheuserproanalyzingdocumentspreviouslyreadbytheperson.Thesemantic-expansionapproachthatintegratessemanticinformationforspreadingexpansionandcontent-basedfilteringfordocumentrecommendation.Asamplesemantic-expansionnetworkExperimentalresultsAnempiricalstudyusingmasterthesesintheNationalCentrallibraryinTaiwanshowsthatthesemantic-expansionapproachoutperformsthetraditionalkeywordapproachincatchinguserinterests.自適應(yīng)構(gòu)件檢索構(gòu)件檢索是構(gòu)件庫研究中的重要問題,有效的構(gòu)件檢索機(jī)制能夠降低構(gòu)件復(fù)用成本。構(gòu)件的復(fù)用者并不是構(gòu)件的設(shè)計者或構(gòu)件庫的管理員,在檢索構(gòu)件時對構(gòu)件庫的描述理解不充分,導(dǎo)致難以給出完整和精確的檢索需求。用戶選擇構(gòu)件的結(jié)果反映其真實需求,如果能夠從用戶的檢索行為以及用戶對檢索結(jié)果的反饋中推斷出用戶的非精確檢索條件與用戶實際需要的精確檢索條件之間內(nèi)在聯(lián)系的模式,就可以提高系統(tǒng)的查準(zhǔn)率?;陉P(guān)聯(lián)挖掘的自適應(yīng)構(gòu)件檢索把關(guān)聯(lián)規(guī)則挖掘方法引入構(gòu)件檢索,從用戶檢索行為以及反饋中挖掘出非精確檢索條件與精確檢索結(jié)果之間的關(guān)聯(lián)規(guī)則,從而調(diào)整檢索機(jī)制,提高構(gòu)件檢索的查準(zhǔn)率。實例{windows}{windows,SQLServer}{Linux}{Linux,Mysql}{金融}{金融,SQLServer}{windows,金融}{windows,金融,SQLServer}零部件供應(yīng)商選擇如何選擇供應(yīng)商不僅決定了產(chǎn)品的質(zhì)量和成本,也決定了產(chǎn)品的銷售價格、維護(hù)費(fèi)用和用戶滿意程度。選擇供應(yīng)商一般以滿足時間約束的條件下最小化物流成本為目標(biāo),沒有考慮零部件故障率與不同地域環(huán)境之間的相關(guān)性?;陉P(guān)聯(lián)規(guī)則的零部件供應(yīng)商選擇使用關(guān)聯(lián)規(guī)則挖掘算法,從產(chǎn)品維修記錄中,尋找不同供應(yīng)商提供的產(chǎn)品零部件及其組合在不同地域的頻繁故障模式。在生成供應(yīng)商選擇和配送方案過程中,利用這些頻繁故障模式,選擇合適的零部件供應(yīng)商組合,達(dá)到物流成本與產(chǎn)品維護(hù)成本的聯(lián)合優(yōu)化。采用決策樹挖掘出人員選拔規(guī)則CHAIDDecisiontreeforpredictingjobperformanceImprovingeducationImprovingteachingandlearningInstructorscanhavetroubleidentifyingtheirrealdifficultiesinlearning.Basedonthestudents’testingrecords,thesystemworkstoidentifyandfindthoseproblems,andthencomesupwithitssuggestionsfordesigningnewteachingstrategies.Assistteacherstoidentifystudents’specificdifficultiesandweaknessesinlearning.Helpsthestudenttofindouthisorherweakpointsinlearningandoffersimprovementrecommendations.ESLrecommenderteachingandlearningRight/wronganswerstatisticaltableForeverystudent,thesystemcreatesaright/wronganswerstatisticaltable:awronganswerisrepresentedby1andarightanswerby0.Summarytableofstudents’wronganswersTheright/wronganswerstatisticaltablesforrespectivestudentsareintegratedinasummarytableofstudents’wronganswers,andthesumvaluesinthetablearethenrankedindescendingordersoastoshowthedescendingdegreesofweaknessesthestudentshavecollectively.HierarchicalclusteringHierarchicalclusteringalgorithmisthenappliedtodatacollectedtosegmentthestudentsintoacertainnumberofclusters,orcategories,eachofwhichincludesstudentssharingthesameorsimilarcharacteristics.Allstudents’right/wronganswerstatisticaltablesClusteringanalysisAclusteringanalysisismadeofthedatainAllstudents’right/wronganswerstatisticaltables.Itisevidentthatthestudentswhosenumbersareenclosedinthefollowingseparateparenthesesbelongtodifferentclustersrespectively:(9,15,6,17,13,19,14,5);(22,23,4,3,21,11,24,20,7,1);(12,18,2,8,25,10,16).搜索引擎優(yōu)化搜索引擎優(yōu)化Theyareusuallynotsearchenginesbythemselves.Theclusteringengineusesoneormoretraditionalsearchenginestogatheranumberofresults;then,itdoesaformofpost-processingontheseresultsinordertoclusterthemintomeaningfulgroups.Thepost-processingstepanalyzessnippets,i.e.,shortdocumentabstractsreturnedbythesearchengine,usuallycontainingwordsaroundquerytermoccurrences.研討題閱讀后面參考文獻(xiàn),分析案例使用的數(shù)據(jù)挖掘方法以及解決的主要問題。結(jié)合自己的實踐,說明所在崗位對商務(wù)智能的需求(針對軟件工程碩士)。典型參考文獻(xiàn)(1)Chen-FuChien,Li-FeiChen.Dataminingtoimprovepersonnelselectionandenhancehumancapital:acasestudyinhigh-technologyindustry.ExpertSystemswithApplication,2008,(34):280-290Cristo′balRomero,Sebastia′nVentura,EnriqueGarc?′a.Dataminingincoursemanagementsystems:Moodlecasestudyandtutorial.Computers&Education51(2008)368–384Yang,C.C.etal.,Improvingschedulingofemergencyphysiciansusingdatamininganalysis,ExpertSystemswithApplications(2008),doi:10.1016/j.eswa.2008.02.069JangHeeLee,SangChanPark.Intelligentprofitablecustomerssegmentationsystembasedonbusinessintelligencetools.ExpertSystemswithApplications29(2005):145–152Chih-MingChen,Ying-LingHsieh,Shih-HsunHsu.Mininglearnerproassociationruleforweb-basedlearningdiagnosis.ExpertSystemswithApplications33(2007)6–22Bong-HorngVhu,Ming-ShianTsai,Cheng-SeenHo.Towardahybriddataminingmodelforcusterretention.Knowledge-BasedSystems20(2007)703–718DanielaGrigoria,FabioCasatib,MaluCastellanos,etal.Businessprocessintelligence.ComputersinIndustry53(2004)321–343DursunDelen,ChristieFuller,CharlesMcCann.Analysisofhealthcarecoverage:Adataminingapproach.Delen,D.etal.,Analysisofhealthcarecoverage:Adataminingapproach,ExpertSystems
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024幼兒園保育員幼兒活動組織與實施合同2篇
- 2024年高端人才引進(jìn)保密合同
- 2024年標(biāo)準(zhǔn)版土方工程車輛租賃合同版
- 2024年藝術(shù)品交易合作合同
- 2025年度文化創(chuàng)意產(chǎn)業(yè)廠房股權(quán)置換與合資經(jīng)營合同3篇
- 2024年度家庭財產(chǎn)贈與法律咨詢合同3篇
- 2024年綠色能源發(fā)電項目投資與合作合同
- 2024防火門供貨及安裝合同
- 2024正規(guī)企業(yè)資源規(guī)劃開發(fā)合同范本2篇
- 2024年餐飲項目三位股東權(quán)益分配合同版B版
- MOOC 漢字文化解密-華中師范大學(xué) 中國大學(xué)慕課答案
- 觸電事故預(yù)防措施
- 問題解決過程PSP-完整版
- 電動葫蘆操作維護(hù)保養(yǎng)規(guī)程培訓(xùn)
- 新型電力系統(tǒng)控制與優(yōu)化
- 淋巴回流障礙護(hù)理查房
- 2024年3月談心談話記錄【五篇】
- 初一英語作文范文30篇
- 期末專題復(fù)習(xí):現(xiàn)代文閱讀 八年級上冊語文專題訓(xùn)練 部編(解析)
- 辦公選址可行性方案
- 2022上海閔行區(qū)初三二模物理試卷及答案
評論
0/150
提交評論