2022-2023學年安徽省蕪湖無為縣聯考中考五模數學試題含解析_第1頁
2022-2023學年安徽省蕪湖無為縣聯考中考五模數學試題含解析_第2頁
2022-2023學年安徽省蕪湖無為縣聯考中考五模數學試題含解析_第3頁
2022-2023學年安徽省蕪湖無為縣聯考中考五模數學試題含解析_第4頁
2022-2023學年安徽省蕪湖無為縣聯考中考五模數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算正確的是()A.a12÷a4=a3 B.a4?a2=a8 C.(﹣a2)3=a6 D.a?(a3)2=a72.已知二次函數y=ax2+bx+c(a≠1)的圖象如圖所示,給出以下結論:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正確結論的序號是()A.③④ B.②③ C.①④ D.①②③3.一個幾何體的三視圖如圖所示,這個幾何體是()A.三菱柱 B.三棱錐 C.長方體 D.圓柱體4.下列各數中,最小的數是()A.0 B. C. D.5.若是關于x的方程的一個根,則方程的另一個根是()A.9 B.4 C.4 D.36.魏晉時期的數學家劉徽首創(chuàng)割圓術.為計算圓周率建立了嚴密的理論和完善的算法.作圓內接正多邊形,當正多邊形的邊數不斷增加時,其周長就無限接近圓的周長,進而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎上繼續(xù)努力,當正多邊形的邊數增加24576時,得到了精確到小數點后七位的圓周率,這一成就在當時是領先其他國家一千多年,如圖,依據“割圓術”,由圓內接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π7.若點(x1,y1),(x2,y2),(x3,y3)都是反比例函數y=﹣圖象上的點,并且y1<0<y2<y3,則下列各式中正確的是()A.x1<x2<x3 B.x1<x3<x2 C.x2<x1<x3 D.x2<x3<x18.下列計算正確的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a2p÷a﹣p=a3p9.設x1,x2是一元二次方程x2﹣2x﹣3=0的兩根,則x12+x22=()A.6B.8C.10D.1210.如圖,已知AB、CD、EF都與BD垂直,垂足分別是B、D、F,且AB=1,CD=3,那么EF的長是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,AB=4,AC=3,以BC為邊在三角形外作正方形BCDE,連接BD,CE交于點O,則線段AO的最大值為_____.12.分解因式:2a4﹣4a2+2=_____.13.若有意義,則x的取值范圍是.14.一次函數與的圖象如圖,則的解集是__.15.拋物線y=(x+1)2-2的頂點坐標是______.16.如圖,在正方形ABCD中,等邊三角形AEF的頂點E,F分別在邊BC和CD上,則∠AEB=__________.17.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知:△ABC中,AB=AC,M是BC的中點,D、E分別是AB、AC邊上的點,且BD=CE.求證:MD=ME.19.(5分)數學興趣小組為了研究中小學男生身高y(cm)和年齡x(歲)的關系,從某市官網上得到了該市2017年統(tǒng)計的中小學男生各年齡組的平均身高,見下表:如圖已經在直角坐標系中描出了表中數據對應的點,并發(fā)現前5個點大致位于直線AB上,后7個點大致位于直線CD上.年齡組x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)該市男學生的平均身高從歲開始增加特別迅速.(2)求直線AB所對應的函數表達式.(3)直接寫出直線CD所對應的函數表達式,假設17歲后該市男生身高增長速度大致符合直線CD所對應的函數關系,請你預測該市18歲男生年齡組的平均身高大約是多少?20.(8分)為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據收集到的數據,繪制成如下兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息,完成下列問題:(1)此次共調查了多少人?(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數;(3)請將條形統(tǒng)計圖補充完整;(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?21.(10分)如圖,經過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關于直線x=2對稱,求拋物線的函數表達式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.22.(10分)如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD.過點D作DE⊥AC,垂足為點E.求證:DE是⊙O的切線;當⊙O半徑為3,CE=2時,求BD長.23.(12分)如圖,AB是⊙O的直徑,點C是⊙O上一點,AD與過點C的切線垂直,垂足為點D,直線DC與AB的延長線相交于點P,弦CE平分∠ACB,交AB點F,連接BE.(1)求證:AC平分∠DAB;(2)求證:PC=PF;(3)若tan∠ABC=,AB=14,求線段PC的長.24.(14分)先化簡,再求值:(x+1y)1﹣(1y+x)(1y﹣x)﹣1x1,其中x=+1,y=﹣1.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

分別根據同底數冪的除法、乘法和冪的乘方的運算法則逐一計算即可得.【詳解】解:A、a12÷a4=a8,此選項錯誤;

B、a4?a2=a6,此選項錯誤;

C、(-a2)3=-a6,此選項錯誤;

D、a?(a3)2=a?a6=a7,此選項正確;

故選D.【點睛】本題主要考查冪的運算,解題的關鍵是掌握同底數冪的除法、乘法和冪的乘方的運算法則.2、C【解析】試題分析:由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.解:①當x=1時,y=a+b+c=1,故本選項錯誤;②當x=﹣1時,圖象與x軸交點負半軸明顯大于﹣1,∴y=a﹣b+c<1,故本選項正確;③由拋物線的開口向下知a<1,∵對稱軸為1>x=﹣>1,∴2a+b<1,故本選項正確;④對稱軸為x=﹣>1,∴a、b異號,即b>1,∴abc<1,故本選項錯誤;∴正確結論的序號為②③.故選B.點評:二次函數y=ax2+bx+c系數符號的確定:(1)a由拋物線開口方向確定:開口方向向上,則a>1;否則a<1;(2)b由對稱軸和a的符號確定:由對稱軸公式x=﹣b2a判斷符號;(3)c由拋物線與y軸的交點確定:交點在y軸正半軸,則c>1;否則c<1;(4)當x=1時,可以確定y=a+b+C的值;當x=﹣1時,可以確定y=a﹣b+c的值.3、A【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】由于左視圖和俯視圖為長方形可得此幾何體為柱體,由主視圖為三角形可得為三棱柱.故選:B.【點睛】此題主要考查了學生對三視圖掌握程度和靈活運用能力,同時也體現了對空間想象能力方面的考查.4、D【解析】

根據實數大小比較法則判斷即可.【詳解】<0<1<,故選D.【點睛】本題考查了實數的大小比較的應用,掌握正數都大于0,負數都小于0,兩個負數比較大小,其絕對值大的反而小是解題的關鍵.5、D【解析】

解:設方程的另一個根為a,由一元二次方程根與系數的故選可得,解得a=,故選D.6、C【解析】

連接OC、OD,根據正六邊形的性質得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據題意計算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.【點睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計算公式是解題的關鍵.7、D【解析】

先根據反比例函數的解析式判斷出函數圖象所在的象限及在每一象限內函數的增減性,再根據y1<0<y2<y3判斷出三點所在的象限,故可得出結論.【詳解】解:∵反比例函數y=﹣中k=﹣1<0,∴此函數的圖象在二、四象限,且在每一象限內y隨x的增大而增大,∵y1<0<y2<y3,∴點(x1,y1)在第四象限,(x2,y2)、(x3,y3)兩點均在第二象限,∴x2<x3<x1.故選:D.【點睛】本題考查的是反比例函數圖象上點的坐標特點,先根據題意判斷出函數圖象所在的象限是解答此題的關鍵.8、D【解析】

直接利用合并同類項法則以及完全平方公式和整式的乘除運算法則分別計算即可得出答案.【詳解】解:A.﹣5x﹣2x=﹣7x,故此選項錯誤;B.(a+3)2=a2+6a+9,故此選項錯誤;C.(﹣a3)2=a6,故此選項錯誤;D.a2p÷a﹣p=a3p,正確.故選D.【點睛】本題主要考查了合并同類項以及完全平方公式和整式的乘除運算,正確掌握運算法則是解題的關鍵.9、C【解析】試題分析:根據根與系數的關系得到x1+x2=2,x1?x2=﹣3,再變形x12+x22得到(x1+x2)2﹣2x1?x2,然后利用代入計算即可.解:∵一元二次方程x2﹣2x﹣3=0的兩根是x1、x2,∴x1+x2=2,x1?x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1?x2=22﹣2×(﹣3)=1.故選C.10、C【解析】

易證△DEF∽△DAB,△BEF∽△BCD,根據相似三角形的性質可得=,=,從而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【詳解】∵AB、CD、EF都與BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故選C.【點睛】本題考查了相似三角形的判定及性質定理,熟練掌握性質定理是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

過O作OF⊥AO且使OF=AO,連接AF、CF,可知△AOF是等腰直角三角形,進而可得AF=AO,根據正方形的性質可得OB=OC,∠BOC=90°,由銳角互余的關系可得∠AOB=∠COF,進而可得△AOB≌△COF,即可證明AB=CF,當點A、C、F三點不共線時,根據三角形的三邊關系可得AC+CF>AF,當點A、C、F三點共線時可得AC+CF=AC+AB=AF=7,即可得AF的最大值,由AF=AO即可得答案.【詳解】如圖,過O作OF⊥AO且使OF=AO,連接AF、CF,∴∠AOF=90°,△AOF是等腰直角三角形,∴AF=AO,∵四邊形BCDE是正方形,∴OB=OC,∠BOC=90°,∵∠BOC=∠AOF=90°,∴∠AOB+∠AOC=∠COF+∠AOC,∴∠AOB=∠COF,又∵OB=OC,AO=OF,∴△AOB≌△COF,∴CF=AB=4,當點A、C、F三點不共線時,AC+CF>AF,當點A、C、F三點共線時,AC+CF=AC+AB=AF=7,∴AF≤AC+CF=7,∴AF的最大值是7,∴AF=AO=7,∴AO=.故答案為【點睛】本題考查正方形的性質,全等三角形的判定與性質,熟練掌握相關定理及性質是解題關鍵.12、1(a+1)1(a﹣1)1.【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】解:原式=1(a4﹣1a1+1)=1(a1﹣1)1=1(a+1)1(a﹣1)1,故答案為:1(a+1)1(a﹣1)1【點睛】本題主要考查提取公因式與公式法的綜合運用,關鍵要掌握提取公因式之后,根據多項式的項數來選擇方法繼續(xù)因式分解,如果多項式是兩項,則考慮用平方差公式;如果是三項,則考慮用完全平方公式.13、x≥8【解析】略14、【解析】

不等式kx+b-(x+a)>0的解集是一次函數y1=kx+b在y2=x+a的圖象上方的部分對應的x的取值范圍,據此即可解答.【詳解】解:不等式的解集是.故答案為:.【點睛】本題考查了一次函數的圖象與一元一次不等式的關系:從函數的角度看,就是尋求使一次函數y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合.15、(-1,-2)【解析】試題分析:因為y=(x+1)2﹣2是拋物線的頂點式,根據頂點式的坐標特點可知,頂點坐標為(﹣1,﹣2),故答案為(﹣1,﹣2).考點:二次函數的性質.16、75【解析】因為△AEF是等邊三角形,所以∠EAF=60°,AE=AF,因為四邊形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,所以∠BAE=15°,所以∠AEB=90°-15°=75°.故答案為75.17、3【解析】

以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據三角形三邊關系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,

,

∵△ACD,△ABE是等邊三角形,

∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,

∴∠EAC=∠BAD,且AE=AB,AD=AC,

∴△DAB≌△CAE(SAS)

∴BD=CE,

若點E,點B,點C不共線時,EC<BC+BE;

若點E,點B,點C共線時,EC=BC+BE.

∴EC≤BC+BE=3,

∴EC的最大值為3,即BD的最大值為3.

故答案是:3【點睛】考查了旋轉的性質,等邊三角形的性質,全等三角形的判定和性質,以及三角形的三邊關系,恰當添加輔助線構造全等三角形是本題的關鍵.三、解答題(共7小題,滿分69分)18、證明見解析.【解析】試題分析:根據等腰三角形的性質可證∠DBM=∠ECM,可證△BDM≌△CEM,可得MD=ME,即可解題.試題解析:證明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中點,∴BM=CM.在△BDM和△CEM中,∵,∴△BDM≌△CEM(SAS).∴MD=ME.考點:1.等腰三角形的性質;2.全等三角形的判定與性質.19、(1)11;(2)y=3.6x+90;(3)該市18歲男生年齡組的平均身高大約是174cm左右.【解析】

(1)根據統(tǒng)計圖仔細觀察即可得出結果(2)先設函數表達式,選取兩個點帶入求值即可(3)先設函數表達式,選取兩個點帶入求值,把帶入預測即可.【詳解】解:(1)由統(tǒng)計圖可得,該市男學生的平均身高從11歲開始增加特別迅速,故答案為:11;(2)設直線AB所對應的函數表達式∵圖象經過點則,解得.即直線AB所對應的函數表達式:(3)設直線CD所對應的函數表達式為:,,得,即直線CD所對應的函數表達式為:把代入得即該市18歲男生年齡組的平均身高大約是174cm左右.【點睛】此題重點考察學生對統(tǒng)計圖和一次函數的應用,熟練掌握一次函數表達式的求法是解題的關鍵.20、(1)200;(2)108°;(3)答案見解析;(4)600【解析】試題分析:(1)根據體育人數80人,占40%,可以求出總人數.(2)根據圓心角=百分比×360°即可解決問題.(3)求出藝術類、其它類社團人數,即可畫出條形圖.(4)用樣本百分比估計總體百分比即可解決問題.試題解析:(1)80÷40%=200(人).

∴此次共調查200人.

(2)×360°=108°.∴文學社團在扇形統(tǒng)計圖中所占圓心角的度數為108°.

(3)補全如圖,(4)1500×40%=600(人).

∴估計該校喜歡體育類社團的學生有600人.【點睛】此題主要考查了條形圖與統(tǒng)計表以及扇形圖的綜合應用,由條形圖與扇形圖結合得出調查的總人數是解決問題的關鍵,學會用樣本估計總體的思想,屬于中考??碱}型.21、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】

(1)由拋物線開口向上,且與x軸有兩個交點,即可做出判斷;(2)根據拋物線的對稱軸及A的坐標,確定出B的坐標,將A,B,C三點坐標代入求出a,b,c的值,即可確定出拋物線解析式;(3)存在,分兩種情況討論:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示;(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,可得AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,分別求出E坐標即可.【詳解】(1)a>0,>0;(2)∵直線x=2是對稱軸,A(﹣2,0),∴B(6,0),∵點C(0,﹣4),將A,B,C的坐標分別代入,解得:,,,∴拋物線的函數表達式為;(3)存在,理由為:(i)假設存在點E使得以A,C,E,F為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示,則四邊形ACEF即為滿足條件的平行四邊形,∵拋物線關于直線x=2對稱,∴由拋物線的對稱性可知,E點的橫坐標為4,又∵OC=4,∴E的縱坐標為﹣4,∴存在點E(4,﹣4);(ii)假設在拋物線上還存在點E′,使得以A,C,F′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,∴AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴點E′的縱坐標是4,∴,解得:,,∴點E′的坐標為(,4),同理可得點E″的坐標為(,4).22、(1)證明見解析;(2)BD=2.【解析】

(1)連接OD,AB為⊙0的直徑得∠ADB=90°,由AB=AC,根據等腰三角形性質得AD平分BC,即DB=DC,則OD為△ABC的中位線,所以OD∥AC,而DE⊥AC,則OD⊥DE,然后根據切線的判定方法即可得到結論;

(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,從而求得BD?CD=AB?CE,由BD=CD,即可求得BD2=AB?CE,然后代入數據即可得到結果.【詳解】(1)證明:連接OD,如圖,∵AB為⊙0的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分BC,即DB=DC,∵OA=OB,∴OD為△ABC的中位線,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是⊙0的切線;(2)∵∠B=∠C,∠CED=∠BDA=90°,∴△DEC∽△ADB,∴,∴BD?CD=AB?CE,∵BD=CD,∴BD2=AB?CE,∵⊙O半徑為3,CE=2,∴BD==2.【點睛】本題考查了切線的判定定理:過半徑的外端點且與半徑垂直的直線為圓的切線.也考查了等腰三角形的性質、三角形相似的判定和性質.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論