2022-2023學(xué)年甘肅省金昌市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁
2022-2023學(xué)年甘肅省金昌市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁
2022-2023學(xué)年甘肅省金昌市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁
2022-2023學(xué)年甘肅省金昌市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁
2022-2023學(xué)年甘肅省金昌市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年甘肅省金昌市成考專升本高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(20題)1.平面的位置關(guān)系為()。A.垂直B.斜交C.平行D.重合

2.

3.

4.

5.

6.

7.交換二次積分次序等于().A.A.

B.

C.

D.

8.

9.方程x2+2y2-z2=0表示的曲面是()A.A.橢球面B.錐面C.柱面D.平面10.()。A.

B.

C.

D.

11.下列命題中正確的有().A.A.

B.

C.

D.

12.

13.

14.A.A.

B.

C.

D.

15.

16.

17.圖示為研磨細(xì)砂石所用球磨機的簡化示意圖,圓筒繞0軸勻速轉(zhuǎn)動時,帶動筒內(nèi)的許多鋼球一起運動,當(dāng)鋼球轉(zhuǎn)動到一定角度α=50。40時,它和筒壁脫離沿拋物線下落,借以打擊礦石,圓筒的內(nèi)徑d=32m。則獲得最大打擊時圓筒的轉(zhuǎn)速為()。

A.8.99r/minB.10.67r/minC.17.97r/minD.21.35r/min

18.

19.

20.設(shè)f'(x)在點x0的某鄰域內(nèi)存在,且f(x0)為f(x)的極大值,則等于().A.A.2B.1C.0D.-2二、填空題(20題)21.冪級數(shù)的收斂半徑為______.

22.

23.函數(shù)f(x)=2x2-x+1,在區(qū)間[-1,2]上滿足拉格朗日中值定理的ξ=_________。

24.

25.

26.27.28.

29.

30.

31.

32.

33.

34.

35.36.37.38.y''-2y'-3y=0的通解是______.

39.

40.三、計算題(20題)41.將f(x)=e-2X展開為x的冪級數(shù).

42.求微分方程y"-4y'+4y=e-2x的通解.

43.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.

44.

45.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

46.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

47.48.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.49.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.51.證明:52.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.53.

54.

55.求微分方程的通解.56.57.求曲線在點(1,3)處的切線方程.58.59.

60.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

四、解答題(10題)61.設(shè)z=f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求62.

63.(本題滿分8分)

64.

65.

66.

67.

68.

69.

70.求直線y=2x+1與直線x=0,x=1和y=0所圍平面圖形的面積,并求該圖形繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積。

五、高等數(shù)學(xué)(0題)71.若f(x)<0,(a<z≤b)且f(b)<0,則在(a,b)內(nèi)()。A.f(x)>0B.f(x)<0C.f(x)=0D.f(x)符號不定六、解答題(0題)72.

參考答案

1.A本題考查的知識點為兩平面的關(guān)系。兩平面的關(guān)系可由兩平面的法向量,n1,n2間的關(guān)系確定。若n1⊥n2,則兩平面必定垂直.若時,兩平面平行;

當(dāng)時,兩平面重合。若n1與n2既不垂直,也不平行,則兩平面斜交。由于n1=(1,-2,3),n2=(2,1,0),n1·n2=0,可知n1⊥n2,因此π1⊥π2,應(yīng)選A。

2.B

3.C解析:

4.D

5.A解析:

6.C

7.B本題考查的知識點為交換二次積分次序.

由所給二次積分可知積分區(qū)域D可以表示為

1≤y≤2,y≤x≤2,

交換積分次序后,D可以表示為

1≤x≤2,1≤y≤x,

故應(yīng)選B.

8.C

9.B對照二次曲面的標(biāo)準(zhǔn)方程可知,所給曲面為錐面,因此選B.

10.D

11.B本題考查的知識點為級數(shù)的性質(zhì).

可知應(yīng)選B.通??梢詫⑵渥鳛榕卸墧?shù)發(fā)散的充分條件使用.

12.C

13.D

14.C本題考查的知識點為復(fù)合函數(shù)求導(dǎo).

可知應(yīng)選C.

15.A

16.D

17.C

18.A解析:

19.D

20.C本題考查的知識點為極值的必要條件;在一點導(dǎo)數(shù)的定義.

由于f(x0)為f(x)的極大值,且f'(x0)存在,由極值的必要條件可知f'(x0)=0.從而

可知應(yīng)選C.21.0本題考查的知識點為冪級數(shù)的收斂半徑.

所給冪級數(shù)為不缺項情形

因此收斂半徑為0.

22.

23.1/2

24.ln|1-cosx|+Cln|1-cosx|+C解析:

25.2yex+x

26.

本題考查的知識點為二階常系數(shù)線性微分方程的求解.

27.(-1,1)。

本題考查的知識點為求冪級數(shù)的收斂區(qū)間。

所給級數(shù)為不缺項情形。

(-1,1)。注《綱》中指出,收斂區(qū)間為(-R,R),不包括端點。本題一些考生填1,這是誤將收斂區(qū)間看作收斂半徑,多數(shù)是由于考試時過于緊張而導(dǎo)致的錯誤。

28.

本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù)計算.

29.3

30.11解析:

31.2x32.由不定積分的基本公式及運算法則,有

33.3

34.

35.|x|

36.1/z本題考查了二元函數(shù)的二階偏導(dǎo)數(shù)的知識點。

37.

本題考查的知識點為定積分的換元法.

解法1

解法2

令t=1+x2,則dt=2xdx.

當(dāng)x=1時,t=2;當(dāng)x=2時,t=5.

這里的錯誤在于進(jìn)行定積分變量替換,積分區(qū)間沒做變化.38.y=C1e-x+C2e3x由y''-2y'-3y=0的特征方程為r2-2r-3=0,得特征根為r1=3,r2=-1,所以方程的通解為y=C1e-x+C2e3x.

39.

解析:

40.

41.

42.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

43.

44.

45.函數(shù)的定義域為

注意

46.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時,價格上漲1%需求量減少2.5%

47.

48.

列表:

說明

49.由等價無窮小量的定義可知50.由二重積分物理意義知

51.

52.

53.

54.

55.

56.57.曲線方程為,點(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

58.

59.由一階線性微分方程通解公式有

60.

61.本題考查的知識點為求抽象函數(shù)的偏導(dǎo)數(shù).

已知z:f(xy,x2),其中f(x,y)有連續(xù)偏導(dǎo)數(shù),求.通常有兩種求解方法.

解法1令f'i表示廠對第i個位置變元的偏導(dǎo)數(shù),則

這里應(yīng)指出,這是當(dāng)每個位置變元對x的偏導(dǎo)數(shù)易求時,才采用此方法.相仿可解

有必要指出,由于第二個位置變元不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論