2022年浙江省嘉興市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022年浙江省嘉興市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022年浙江省嘉興市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022年浙江省嘉興市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022年浙江省嘉興市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年浙江省嘉興市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.()工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開和細(xì)化。

A.計(jì)劃B.組織C.控制D.領(lǐng)導(dǎo)

2.

A.0B.2C.4D.8

3.下列關(guān)系式中正確的有()。A.

B.

C.

D.

4.

5.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2

6.設(shè)函數(shù)f(x)=2sinx,則f'(x)等于().A.A.2sinxB.2cosxC.-2sinxD.-2cosx.

7.設(shè)函數(shù)Y=e-x,則Y'等于().A.A.-ex

B.ex

C.-e-xQ258

D.e-x

8.設(shè)函數(shù)f(x)=(1+x)ex,則函數(shù)f(x)()。

A.有極小值B.有極大值C.既有極小值又有極大值D.無(wú)極值

9.

10.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ等于().

A.-3/4B.0C.3/4D.1

11.

12.

13.

14.方程y+2y+y=0的通解為

A.c1+c2e-x

B.e-x(c1+C2x)

C.c1e-x

D.c1e-x+c2ex

15.

16.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx

17.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

18.A.A.1B.2C.3D.4

19.函數(shù)y=ex+arctanx在區(qū)間[-1,1]上

A.單調(diào)減少B.單調(diào)增加C.無(wú)最大值D.無(wú)最小值

20.A.A.

B.

C.-3cotx+C

D.3cotx+C

二、填空題(20題)21.

22.

23.

24.

25.

26.

27.

28.

29.

30.當(dāng)x=1時(shí),f(x)=x3+3px+q取到極值(其中q為任意常數(shù)),則p=______.

31.

32.曲線y=x3-3x2-x的拐點(diǎn)坐標(biāo)為____。

33.

34.冪級(jí)數(shù)

的收斂半徑為________。

35.

36.

37.

38.微分方程y'+4y=0的通解為_________。

39.設(shè)z=tan(xy-x2),則=______.

40.設(shè)z=sin(y+x2),則.

三、計(jì)算題(20題)41.將f(x)=e-2X展開為x的冪級(jí)數(shù).

42.

43.證明:

44.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

45.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

46.

47.

48.求曲線在點(diǎn)(1,3)處的切線方程.

49.求微分方程的通解.

50.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

51.

52.

53.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

54.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

55.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

56.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

57.

58.

59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

60.求微分方程y"-4y'+4y=e-2x的通解.

四、解答題(10題)61.

62.

63.

64.

65.用鐵皮做一個(gè)容積為V的圓柱形有蓋桶,證明當(dāng)圓柱的高等于底面直徑時(shí),所使用的鐵皮面積最小。

66.

67.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.

六、解答題(0題)72.設(shè)函數(shù)y=ex+arctanx+π2,求dy.

參考答案

1.A解析:計(jì)劃工作是對(duì)決策工作在時(shí)間和空間兩個(gè)緯度上進(jìn)一步的展開和細(xì)分。

2.A解析:

3.B本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

由于x,x2都為連續(xù)函數(shù),因此與都存在。又由于0<x<1時(shí),x>x2,因此

可知應(yīng)選B。

4.D

5.A由于

可知應(yīng)選A.

6.B本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的運(yùn)算.

f(x)=2sinx,

f'(x)=2(sinx)'=2cosx,

可知應(yīng)選B.

7.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.

由復(fù)合函數(shù)的導(dǎo)數(shù)鏈?zhǔn)椒▌t知

可知應(yīng)選C.

8.A因f(x)=(1+x)ex且處處可導(dǎo),于是,f'(x)=ex+(1+x)·ex=(x+2)ex,令f'(x)=0得駐點(diǎn)x=-2;又x<-2時(shí),f'(x)<0;x>-2時(shí),f'(x)>0;從而f(x)在i=-2處取得極小值,且f(x)只有一個(gè)極值.

9.C

10.D解析:本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.

由于y=x2-x+1在[-1,3]上連續(xù),在(-1,3)內(nèi)可導(dǎo),可知y在[-1,3]上滿足拉格朗日中值定理,又由于y'=2x-1,因此必定存在ξ∈(-1,3),使

可知應(yīng)選D.

11.B

12.A

13.D解析:un、vn可能為任意數(shù)值,因此正項(xiàng)級(jí)數(shù)的比較判別法不能成立,可知應(yīng)選D。

14.B

15.A解析:

16.B

17.C本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

由于當(dāng)f(x)連續(xù)時(shí),,可知應(yīng)選C.

18.A

19.B本題考查了函數(shù)的單調(diào)性的知識(shí)點(diǎn),

因y'=ex+1/(1+x2)>0處處成立,于是函數(shù)在(-∞,+∞)內(nèi)都是單調(diào)增加的,故在[-1,1]上單調(diào)增加。

20.C

21.

本題考查的知識(shí)點(diǎn)為求直線的方程.

由于所求直線平行于已知直線1,可知兩條直線的方向向量相同,由直線的標(biāo)準(zhǔn)式方程可知所求直線方程為

22.

23.2

24.

本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。

25.

本題考查的知識(shí)點(diǎn)為微分的四則運(yùn)算.

注意若u,v可微,則

26.

27.

28.

解析:

29.

30.-1f'(x)=3x2+3p,f'(1)=3十3p=0,所以p=-1.

31.

32.(1,-1)

33.

34.所給冪級(jí)數(shù)為不缺項(xiàng)情形,可知ρ=1,因此收斂半徑R==1。

35.

36.

37.

38.y=Ce-4x

39.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

z=tan(xy-x2),

40.2xcos(y+x2)本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù)計(jì)算.

可以令u=y+x2,得z=sinu,由復(fù)合函數(shù)偏導(dǎo)數(shù)的鏈?zhǔn)椒▌t得

41.

42.

43.

44.函數(shù)的定義域?yàn)?/p>

注意

45.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

46.

47.

48.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

49.

50.

51.

52.由一階線性微分方程通解公式有

53.

列表:

說(shuō)明

54.由等價(jià)無(wú)窮小量的定義可知

55.

56.

57.

58.

59.由二重積分物理意義知

60.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

61.

62.

63.

64.

65.

于是由實(shí)際問題得,S存在最小值,即當(dāng)圓柱的高等于地面的直徑時(shí),所使用的鐵皮面積最小。于是由實(shí)際問題得,S存在最小值,即當(dāng)圓柱的高等于地面的直徑時(shí),所使用的鐵皮面積最小。

66.

67.由于直線2x-6y+1=0的斜率k=1/3,與其垂直的直線的斜率k1=-1/k=-3.對(duì)于y=x3+3x25,y'=3x2+6x.由題意應(yīng)有3x2+6x=-3,因此x2+2x+1=0,x=-1,此時(shí)y=(-1)3+3

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論