版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年甘肅省慶陽(yáng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)f(x)=x3+x,則等于()。A.0
B.8
C.
D.
2.
3.A.A.條件收斂B.絕對(duì)收斂C.收斂性與k有關(guān)D.發(fā)散
4.
5.A.0或1B.0或-1C.0或2D.1或-1
6.
7.曲線y=lnx-2在點(diǎn)(e,-1)的切線方程為()A.A.
B.
C.
D.
8.A.A.sinx+sin2B.-sinx+sin2C.sinxD.-sinx
9.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)
10.若級(jí)數(shù)在x=-1處收斂,則此級(jí)數(shù)在x=2處
A.發(fā)散B.條件收斂C.絕對(duì)收斂D.不能確定
11.
12.
13.
14.設(shè)在點(diǎn)x=1處連續(xù),則a等于()。A.-1B.0C.1D.2
15.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置關(guān)系為().A.A.垂直B.斜交C.平行D.重合
16.()。A.
B.
C.
D.
17.A.A.
B.B.
C.C.
D.D.
18.設(shè)y=lnx,則y″等于().
A.1/x
B.1/x2
C.-1/x
D.-1/x2
19.
20.A.A.arctanx2
B.2xarctanx
C.2xarctanx2
D.
二、填空題(20題)21.設(shè)z=2x+y2,則dz=______。
22.設(shè),則y'=______.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.曲線y=x3-3x2-x的拐點(diǎn)坐標(biāo)為____。
36.
37.
38.設(shè)y=f(x)可導(dǎo),點(diǎn)xo=2為f(x)的極小值點(diǎn),且f(2)=3.則曲線y=f(x)在點(diǎn)(2,3)處的切線方程為__________.
39.
40.
三、計(jì)算題(20題)41.
42.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
43.
44.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則
45.將f(x)=e-2X展開為x的冪級(jí)數(shù).
46.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
47.求微分方程的通解.
48.
49.
50.證明:
51.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
52.求曲線在點(diǎn)(1,3)處的切線方程.
53.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
54.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
55.
56.
57.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
58.
59.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.求垂直于直線2x-6y+1=0且與曲線y=x3+3x2-5相切的直線方程.
62.
63.
64.
65.
66.
67.求函數(shù)f(x,y)=e2x(x+y2+2y)的極值.
68.用鐵皮做一個(gè)容積為V的圓柱形有蓋桶,證明當(dāng)圓柱的高等于底面直徑時(shí),所使用的鐵皮面積最小。
69.
70.
五、高等數(shù)學(xué)(0題)71.若函數(shù)f(x)的導(dǎo)函數(shù)為sinx,則f(x)的一個(gè)原函數(shù)是__________。
六、解答題(0題)72.
參考答案
1.A本題考查的知識(shí)點(diǎn)為定積分的對(duì)稱性質(zhì)。由于所給定積分的積分區(qū)間為對(duì)稱區(qū)間,被積函數(shù)f(x)=x3+x為連續(xù)的奇函數(shù)。由定積分的對(duì)稱性質(zhì)可知
可知應(yīng)選A。
2.C
3.A本題考杏的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂.
4.B
5.A
6.A
7.D
8.D
9.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。
10.C由題意知,級(jí)數(shù)收斂半徑R≥2,則x=2在收斂域內(nèi)部,故其為絕對(duì)收斂.
11.C
12.B
13.C
14.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。
由于y為分段函數(shù),x=1為其分段點(diǎn)。在x=1的兩側(cè)f(x)的表達(dá)式不同。因此討論y=f(x)在x=1處的連續(xù)性應(yīng)該利用左連續(xù)與右連續(xù)的概念。由于
當(dāng)x=1為y=f(x)的連續(xù)點(diǎn)時(shí),應(yīng)有存在,從而有,即
a+1=2。
可得:a=1,因此選C。
15.A本題考查的知識(shí)點(diǎn)為兩平面的關(guān)系.
兩平面的關(guān)系可由兩平面的法向量n1,n2間的關(guān)系確定.
16.D
17.B本題考查了已知積分函數(shù)求原函數(shù)的知識(shí)點(diǎn)
18.D由于Y=lnx,可得知,因此選D.
19.A
20.C
21.2dx+2ydy
22.解析:本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的四則運(yùn)算.
23.
24.
25.1/2
本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.
其積分區(qū)域如圖1—1陰影區(qū)域所示.
可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.
解法1
解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對(duì)x積分,后對(duì)y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
26.
27.
28.F(sinx)+C.
本題考查的知識(shí)點(diǎn)為不定積分的換元法.
29.
30.
解析:
31.11解析:
32.-2/π本題考查了對(duì)由參數(shù)方程確定的函數(shù)求導(dǎo)的知識(shí)點(diǎn).
33.本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.所給級(jí)數(shù)為缺項(xiàng)情形,由于
34.
35.(1,-1)
36.
37.本題考查的知識(shí)點(diǎn)為重要極限公式。
38.
39.0<k≤10<k≤1解析:
40.0
41.
42.函數(shù)的定義域?yàn)?/p>
注意
43.由一階線性微分方程通解公式有
44.由等價(jià)無窮小量的定義可知
45.
46.
列表:
說明
47.
48.
49.
50.
51.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
52.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.
54.
55.
56.
57.
58.
則
59.由二重積分物理意義知
60.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
61.解
62.
63.
64.積分區(qū)域D如下圖所示:
被積函數(shù)f(x,y)=y/x,化為二次積分時(shí)對(duì)哪個(gè)變量皆易于積分;但是區(qū)域D易于用X—型不等式表示,因此選擇先對(duì)y積分,后對(duì)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度特殊功能性內(nèi)墻涂料研發(fā)與應(yīng)用合同3篇
- 二零二五年度公司對(duì)公司智能化辦公租賃合同3篇
- 2025上海市國(guó)有土地使用權(quán)出讓合同范本
- 二零二五年度能源企業(yè)公司掛靠能源供應(yīng)合同3篇
- 2025年度內(nèi)部承包合同協(xié)議書:XX部門內(nèi)部承包銷售業(yè)績(jī)提成協(xié)議3篇
- 二零二五年度全款購(gòu)車車輛認(rèn)證合同模板3篇
- 二零二五年度農(nóng)村房屋贈(zèng)與合同附帶農(nóng)用設(shè)備配套協(xié)議
- 2025年度土地流轉(zhuǎn)承包與農(nóng)村金融服務(wù)合作協(xié)議3篇
- 二零二五年度解除勞動(dòng)合同經(jīng)濟(jì)補(bǔ)償金及員工心理咨詢服務(wù)合同3篇
- 2025年度辦公室租賃合同(含企業(yè)活動(dòng)策劃與執(zhí)行)3篇
- 一年級(jí)期末無紙筆化測(cè)評(píng)方案
- 大學(xué)生安全知識(shí)教育高職PPT完整全套教學(xué)課件
- 同步電機(jī)的基本理論和運(yùn)行特性
- 焦度計(jì)的光學(xué)結(jié)構(gòu)原理
- 民法典法律知識(shí)普及講座村居版本
- 低值易耗品的驗(yàn)收
- 抖音短視頻運(yùn)營(yíng)部門薪酬績(jī)效考核體系(抖音、快手、B站、西瓜視頻、小紅書短視頻運(yùn)營(yíng)薪酬績(jī)效)
- 附件2.英文預(yù)申請(qǐng)書(concept note)模板
- 食品食材配送人員配置和工作職責(zé)
- 大病救助申請(qǐng)書
- GA/T 669.6-2008城市監(jiān)控報(bào)警聯(lián)網(wǎng)系統(tǒng)技術(shù)標(biāo)準(zhǔn)第6部分:視音頻顯示、存儲(chǔ)、播放技術(shù)要求
評(píng)論
0/150
提交評(píng)論