版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年云南省昆明市普通高校對(duì)口單招數(shù)學(xué)自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(10題)1.A.B.C.D.
2.函數(shù)的定義域是()A.(-1,1)B.[0,1]C.[-1,1)D.(-1,1]
3.已知互相垂直的平面α,β交于直線l若直線m,n滿足m⊥a,n⊥β則()A.m//LB.m//nC.n⊥LD.m⊥n
4.正方形ABCD的邊長(zhǎng)為12,PA丄平面ABCD,PA=12,則點(diǎn)P到對(duì)角線BD的距離為()A.12
B.12
C.6
D.6
5.已知點(diǎn)A(1,-1),B(-1,1),則向量為()A.(1,-1)B.(-1,1)C.(0,0)D.(-2,2)
6.A.b>a>0B.b<a<0C.a>b>0D.a<b<0
7.已知函數(shù)f(x)=x2-x+1,則f(1)的值等于()A.-3B.-1C.1D.2
8.下列函數(shù)為偶函數(shù)的是A.
B.
C.
D.
9.已知sin2α<0,且cosa>0,則α的終邊在()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
10.{已知集合A={-1,0,1},B={x|-1≤x<1}則A∩B=()A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}
二、填空題(10題)11.如圖所示,某人向圓內(nèi)投鏢,如果他每次都投入圓內(nèi),那么他投中正方形區(qū)域的概率為_(kāi)___。
12.
13.
14.已知數(shù)列{an}是各項(xiàng)都是正數(shù)的等比數(shù)列,其中a2=2,a4=8,則數(shù)列{an}的前n項(xiàng)和Sn=______.
15.若x<2,則_____.
16.若事件A與事件ā互為對(duì)立事件,且P(ā)=P(A),則P(ā)=
。
17.函數(shù)y=3sin(2x+1)的最小正周期為
。
18.數(shù)列{an}滿足an+1=1/1-an,a2=2,則a1=_____.
19.若l與直線2x-3y+12=0的夾角45°,則l的斜線率為_(kāi)____.
20.若函數(shù)_____.
三、計(jì)算題(5題)21.近年來(lái),某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計(jì)100噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):(1)試估計(jì)“可回收垃圾”投放正確的概率;(2)試估計(jì)生活垃圾投放錯(cuò)誤的概率。
22.求焦點(diǎn)x軸上,實(shí)半軸長(zhǎng)為4,且離心率為3/2的雙曲線方程.
23.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
24.有四個(gè)數(shù),前三個(gè)數(shù)成等差數(shù)列,公差為10,后三個(gè)數(shù)成等比數(shù)列,公比為3,求這四個(gè)數(shù).
25.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
四、簡(jiǎn)答題(10題)26.如圖,四棱錐P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求證:BC丄平面PAC。(2)求點(diǎn)B到平面PCD的距離。
27.已知函數(shù),且.(1)求a的值;(2)求f(x)函數(shù)的定義域及值域.
28.三個(gè)數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。
29.解不等式組
30.已知的值
31.計(jì)算
32.已知橢圓和直線,求當(dāng)m取何值時(shí),橢圓與直線分別相交、相切、相離。
33.解關(guān)于x的不等式
34.在等差數(shù)列中,已知a1,a4是方程x2-10x+16=0的兩個(gè)根,且a4>a1,求S8的值
35.已知雙曲線C的方程為,離心率,頂點(diǎn)到漸近線的距離為,求雙曲線C的方程
五、解答題(10題)36.
37.
38.已知橢圓x2/a2+y2/b2=1(a>b>0)的離心率為,右焦點(diǎn)為(,0),斜率為1的直線L與橢圓G交于A,B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為P(-3,2).(1)求橢圓G的方程;(2)求△PAB的面積.
39.已知數(shù)列{an}是公差不為0的等差數(shù)列a1=2,且a2,a3,a4+1成等比數(shù)列.(1)求數(shù)列{an}的通項(xiàng)公式;(2)設(shè)bn=2/n(an+2),求數(shù)列{bn}的前n項(xiàng)和Sn.
40.已知{an}為等差數(shù)列,且a3=-6,a6=0.(1)求{an}的通項(xiàng)公式;(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求{bn}的前n項(xiàng)和公式.
41.已知函數(shù)f(x)=2sin(x-π/3).(1)寫(xiě)出函數(shù)f(x)的周期;(2)將函數(shù)f(x)圖象上所有的點(diǎn)向左平移π/3個(gè)單位,得到函數(shù)g(x)的圖象,寫(xiě)出函數(shù)g(x)的表達(dá)式,并判斷函數(shù)g(x)的奇偶性.
42.
43.
44.已知f(x)=x3+3ax2+bx+a2(a>1)在x=—1時(shí)有極值0.(1)求常數(shù)a,b的值;(2)求f(x)的單調(diào)區(qū)間.
45.2017年,某廠計(jì)劃生產(chǎn)25噸至45噸的某種產(chǎn)品,已知生產(chǎn)該產(chǎn)品的總成本y(萬(wàn)元)與總產(chǎn)量x(噸)之間的關(guān)系可表示為y=x2/10-2x+90.(1)求該產(chǎn)品每噸的最低生產(chǎn)成本;(2)若該產(chǎn)品每噸的出廠價(jià)為6萬(wàn)元,求該廠2017年獲得利潤(rùn)的最大值.
六、單選題(0題)46.AB>0是a>0且b>0的()A.充分條件B.必要條件C.充要條件D.既不充分也不必要條件
參考答案
1.A
2.C由題可知,x+1>=0,1-x>0,因此定義域?yàn)镃。
3.C直線與平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因?yàn)閚⊥β,所以n⊥L.
4.D
5.D平面向量的線性運(yùn)算.AB=(-1-1,1-(-1)=(-2,2).
6.D
7.C函數(shù)值的計(jì)算f(1)=1-1+1=1.
8.A
9.D三角函數(shù)值的符號(hào)∵sin2α=2sinα.cosα<0,又cosα>0,∴sinα<0,∴α的終邊在第四象限,
10.B集合的運(yùn)算.A中的元素-1,0在B中,1不在B中,所以A∩B={-1,0}.
11.2/π。
12.7
13.75
14.2n-1
15.-1,
16.0.5由于兩個(gè)事件是對(duì)立事件,因此兩者的概率之和為1,又兩個(gè)事件的概率相等,因此概率均為0.5.
17.
18.1/2數(shù)列的性質(zhì).a2=1/1-a1=2,所以a1=1/2
19.5或,
20.1,
21.
22.解:實(shí)半軸長(zhǎng)為4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20雙曲線方程為
23.解:(1)因?yàn)閒(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因?yàn)閒(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
24.
25.
26.證明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC則BC丄平面PAC(2)設(shè)點(diǎn)B到平面PCD的距離為hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1則△ADC為等邊三角形,且AC=1PA=
PD=PC=2
27.(1)(2)
28.由已知得:由上可解得
29.x2-6x+8>0,∴x>4,x<2(1)(2)聯(lián)系(1)(2)得不等式組的解集為
30.
∴∴則
31.
32.∵∴當(dāng)△>0時(shí),即,相交當(dāng)△=0時(shí),即,相切當(dāng)△<0時(shí),即,相離
33.
34.方程的兩個(gè)根為2和8,又∴又∵a4=a1+3d,∴d=2∵。
35.
36.
37.
38.
39.(1)設(shè)數(shù)列{an}的公差為d,由a1=2和a2,a3,a4+1成等比數(shù)列,得(2+2d)2=(2+d).(3+3d),解得d=2,或d=-1,當(dāng)d=-1時(shí)a3=0與a2,a3,a4+1成等比數(shù)列矛盾,舍去.所以d=2,所以an=a1+(n-1)d=2+2(n-1)=2n即數(shù)列{an}的通項(xiàng)公式an=2n.
40.(1)設(shè)等差數(shù)列{an}的公差為d因?yàn)閍3=-6,a5=0,所以解得a1=-10,d=2所以an=-10+(n-1)×2=2n-12.(2)設(shè)等比數(shù)列{bn}的公比為q.因?yàn)閎2=a1+a2+a3=-24,b1=-8,所以-8q=-24,q=3.所以數(shù)列{bn}的前n項(xiàng)和公式為Sn=b1(1-qn)/1-q=4(1-3n)
41.(1)f(x)=2sin(x-π/4),T=2π/|π|=2π(2)由題意得g(x)=f(x+π/3)=2sin[(x+π/3)-π/3]=2sinx,x∈R.∵g(-x)=2sin(-x)=-2sinx=-g(x),為奇函數(shù).
42.
43.
44.(1)f(x)=3x2+6ax+b,由題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 休完產(chǎn)假年終總結(jié)
- 數(shù)控車(chē)削加工技術(shù) 教案 項(xiàng)目五 數(shù)控車(chē)床的操作
- 15.5 串、并聯(lián)電路中電流的規(guī)律(4大題型)(含答案解析)
- 初中八年級(jí)語(yǔ)文上學(xué)期期中考前測(cè)試卷含答案解析
- 中國(guó)跨境雙向并購(gòu)與招商引資案例報(bào)告
- T-YNRZ 021-2024 珠芽黃魔芋高產(chǎn)種植技術(shù)規(guī)程
- 【課件】Unit+3+SectionB+Writing+課件人教版英語(yǔ)七年級(jí)上冊(cè)
- 高效脫磷河鋼集團(tuán)李建新
- 高中物理第十八章原子結(jié)構(gòu)3氫原子光譜課件新人教版選修3-
- 信息技術(shù)(第2版)(拓展模塊)教案 拓展模塊5 5.5應(yīng)用開(kāi)發(fā)實(shí)例2
- 采伐樹(shù)木合同模板
- 培訓(xùn)師破冰游戲大全課件
- 《氣能破巖作業(yè)技術(shù)規(guī)程》征求意見(jiàn)稿編制說(shuō)明
- Unit 2 How often do you exercise教學(xué)設(shè)計(jì)-2024-2025學(xué)年人教版英語(yǔ)八年級(jí)上冊(cè)
- 消防救生照明線標(biāo)準(zhǔn)解析
- GB/T 24304-2024動(dòng)植物油脂茴香胺值的測(cè)定
- 第一單元 史前時(shí)期:原始社會(huì)與中華文明的起源(復(fù)習(xí)課件)
- 廣東省深圳市2023-2024學(xué)年高一上學(xué)期語(yǔ)文期中試卷(含答案)
- 學(xué)校采購(gòu)課程合同范本
- 2024年公安基礎(chǔ)知識(shí)考試題庫(kù)及答案
- 第21課《小圣施威降大圣》公開(kāi)課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì) 統(tǒng)編版語(yǔ)文七年級(jí)上冊(cè)-1
評(píng)論
0/150
提交評(píng)論