甘肅省張掖市甘州中學2023屆中考數(shù)學模擬預測題含解析_第1頁
甘肅省張掖市甘州中學2023屆中考數(shù)學模擬預測題含解析_第2頁
甘肅省張掖市甘州中學2023屆中考數(shù)學模擬預測題含解析_第3頁
甘肅省張掖市甘州中學2023屆中考數(shù)學模擬預測題含解析_第4頁
甘肅省張掖市甘州中學2023屆中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算(﹣)﹣1的結(jié)果是()A.﹣ B. C.2 D.﹣22.利用運算律簡便計算52×(–999)+49×(–999)+999正確的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–19983.下列說法錯誤的是()A.必然事件的概率為1B.數(shù)據(jù)1、2、2、3的平均數(shù)是2C.數(shù)據(jù)5、2、﹣3、0的極差是8D.如果某種游戲活動的中獎率為40%,那么參加這種活動10次必有4次中獎4.如圖所示,的頂點是正方形網(wǎng)格的格點,則的值為()A. B. C. D.5.如圖,在△ABC中,AC⊥BC,∠ABC=30°,點D是CB延長線上的一點,且BD=BA,則tan∠DAC的值為()A. B.2 C. D.36.下列圖形是中心對稱圖形的是()A. B. C. D.7.下列“慢行通過,注意危險,禁止行人通行,禁止非機動車通行”四個交通標志圖(黑白陰影圖片)中為軸對稱圖形的是()A. B. C. D.8.如圖,已知AB和CD是⊙O的兩條等弦.OM⊥AB,ON⊥CD,垂足分別為點M、N,BA、DC的延長線交于點P,聯(lián)結(jié)OP.下列四個說法中:①;②OM=ON;③PA=PC;④∠BPO=∠DPO,正確的個數(shù)是()A.1 B.2 C.3 D.49.一個關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥310.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F(xiàn)分別是CD,AD上的點,且CE=AF.如果∠AED=62°,那么∠DBF的度數(shù)為()A.62° B.38° C.28° D.26°二、填空題(共7小題,每小題3分,滿分21分)11.方程x+1=的解是_____.12.矩形ABCD中,AB=8,AD=6,E為BC邊上一點,將△ABE沿著AE翻折,點B落在點F處,當△EFC為直角三角形時BE=_____.13.如圖,在△ABC中,∠A=60°,若剪去∠A得到四邊形BCDE,則∠1+∠2=______.14.分解因式:=____15.在實數(shù)范圍內(nèi)分解因式:=_________16.如圖,在△ABC中,AB=AC,AH⊥BC,垂足為點H,如果AH=BC,那么sin∠BAC的值是____.17.甲,乙兩家汽車銷售公司根據(jù)近幾年的銷售量分別制作了如圖所示的統(tǒng)計圖,從2014~2018年,這兩家公司中銷售量增長較快的是_____公司(填“甲”或“乙”).三、解答題(共7小題,滿分69分)18.(10分)我市正在開展“食品安全城市”創(chuàng)建活動,為了解學生對食品安全知識的了解情況,學校隨機抽取了部分學生進行問卷調(diào)查,將調(diào)查結(jié)果按照“A非常了解、B了解、C了解較少、D不了解”四類分別進行統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:此次共調(diào)查了名學生;扇形統(tǒng)計圖中D所在扇形的圓心角為;將上面的條形統(tǒng)計圖補充完整;若該校共有800名學生,請你估計對食品安全知識“非常了解”的學生的人數(shù).19.(5分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.求m的值和反比例函數(shù)的表達式;直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?20.(8分)如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.證明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的長,21.(10分)如圖,在△ABC中,以AB為直徑的⊙O交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,且DH是⊙O的切線,連接DE交AB于點F.(1)求證:DC=DE;(2)若AE=1,,求⊙O的半徑.22.(10分)如圖,水渠邊有一棵大木瓜樹,樹干DO(不計粗細)上有兩個木瓜A、B(不計大小),樹干垂直于地面,量得AB=2米,在水渠的對面與O處于同一水平面的C處測得木瓜A的仰角為45°、木瓜B的仰角為30°.求C處到樹干DO的距離CO.(結(jié)果精確到1米)(參考數(shù)據(jù):,)23.(12分)武漢市某中學的一個數(shù)學興趣小組在本校學生中開展主題為“垃圾分類知多少”的專題調(diào)查活動,采取隨機抽樣的方式進行問卷調(diào)查,問卷詞查的結(jié)果分為“非常了解“、“比較了解”、“只聽說過”,“不了解”四個等級,劃分等級后的數(shù)據(jù)整理如下表:等級非常了解比較了解只聽說過不了解頻數(shù)40120364頻率0.2m0.180.02(1)本次問卷調(diào)查取樣的樣本容量為,表中的m值為;(2)在扇形圖中完善數(shù)據(jù),寫出等級及其百分比;根據(jù)表中的數(shù)據(jù)計算等級為“非常了解”的頻數(shù)在扇形統(tǒng)計圖所對應的扇形的圓心角的度數(shù);(3)若該校有學生1500人,請根據(jù)調(diào)查結(jié)果估計這些學生中“比較了解”垃圾分類知識的人數(shù)約為多少?24.(14分)如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學興趣小組對本班同學一天飲用飲品的情況進行了調(diào)查,大致可分為四種:A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據(jù)統(tǒng)計結(jié)果繪制如下兩個統(tǒng)計圖(如圖),根據(jù)統(tǒng)計圖提供的信息,解答下列問題:請你補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);為了養(yǎng)成良好的生活習慣,班主任決定在自帶白開水的5名同學(男生2人,女生3人)中隨機抽取2名同學擔任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)負整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù),可得答案.【詳解】解:,

故選D.【點睛】本題考查了負整數(shù)指數(shù)冪,負整數(shù)指數(shù)冪與正整數(shù)指數(shù)冪互為倒數(shù).2、B【解析】

根據(jù)乘法分配律和有理數(shù)的混合運算法則可以解答本題.【詳解】原式=-999×(52+49-1)=-999×100=-1.故選B.【點睛】本題考查了有理數(shù)的混合運算,解答本題的關(guān)鍵是明確有理數(shù)混合運算的計算方法.3、D【解析】試題分析:A.概率值反映了事件發(fā)生的機會的大小,必然事件是一定發(fā)生的事件,所以概率為1,本項正確;B.數(shù)據(jù)1、2、2、3的平均數(shù)是1+2+2+34C.這些數(shù)據(jù)的極差為5﹣(﹣3)=8,故本項正確;D.某種游戲活動的中獎率為40%,屬于不確定事件,可能中獎,也可能不中獎,故本說法錯誤,故選D.考點:1.概率的意義;2.算術(shù)平均數(shù);3.極差;4.隨機事件4、B【解析】

連接CD,求出CD⊥AB,根據(jù)勾股定理求出AC,在Rt△ADC中,根據(jù)銳角三角函數(shù)定義求出即可.【詳解】解:連接CD(如圖所示),設(shè)小正方形的邊長為,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,則.故選B.【點睛】本題考查了勾股定理,銳角三角形函數(shù)的定義,等腰三角形的性質(zhì),直角三角形的判定的應用,關(guān)鍵是構(gòu)造直角三角形.5、A【解析】

設(shè)AC=a,由特殊角的三角函數(shù)值分別表示出BC、AB的長度,進而得出BD、CD的長度,由公式求出tan∠DAC的值即可.【詳解】設(shè)AC=a,則BC==a,AB==2a,∴BD=BA=2a,∴CD=(2+)a,∴tan∠DAC=2+.故選A.【點睛】本題主要考查特殊角的三角函數(shù)值.6、B【解析】

根據(jù)中心對稱圖形的概念,軸對稱圖形與中心對稱圖形是圖形沿對稱中心旋轉(zhuǎn)180度后與原圖重合,即可解題.A、不是中心對稱圖形,故本選項錯誤;B、是中心對稱圖形,故本選項正確;C、不是中心對稱圖形,故本選項錯誤;D、不是中心對稱圖形,故本選項錯誤.故選B.考點:中心對稱圖形.【詳解】請在此輸入詳解!7、B【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷即可得出答案.【詳解】A.不是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項正確;C.不是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項錯誤.故選B.8、D【解析】如圖連接OB、OD;∵AB=CD,∴=,故①正確∵OM⊥AB,ON⊥CD,∴AM=MB,CN=ND,∴BM=DN,∵OB=OD,∴Rt△OMB≌Rt△OND,∴OM=ON,故②正確,∵OP=OP,∴Rt△OPM≌Rt△OPN,∴PM=PN,∠OPB=∠OPD,故④正確,∵AM=CN,∴PA=PC,故③正確,故選D.9、C【解析】試題解析:一個關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點:在數(shù)軸上表示不等式的解集.10、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質(zhì).注意:根據(jù)斜邊和直角邊對應相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點睛:熟練運用等腰直角三角形三線合一性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、x=1【解析】

無理方程兩邊平方轉(zhuǎn)化為整式方程,求出整式方程的解得到x的值,經(jīng)檢驗即可得到無理方程的解.【詳解】兩邊平方得:(x+1)1=1x+5,即x1=4,

開方得:x=1或x=-1,

經(jīng)檢驗x=-1是增根,無理方程的解為x=1.

故答案為x=112、3或1【解析】

分當點F落在矩形內(nèi)部時和當點F落在AD邊上時兩種情況求BE得長即可.【詳解】當△CEF為直角三角形時,有兩種情況:當點F落在矩形內(nèi)部時,如圖1所示.連結(jié)AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折疊,使點B落在點F處,∴∠AFE=∠B=90°,當△CEF為直角三角形時,只能得到∠EFC=90°,∴點A、F、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點F處,如圖,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,設(shè)BE=x,則EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②當點F落在AD邊上時,如圖2所示.此時ABEF為正方形,∴BE=AB=1.綜上所述,BE的長為3或1.故答案為3或1.【點睛】本題考查了矩形的性質(zhì)、圖形的折疊變換、勾股定理的應用等知識點,解題時要注意分情況討論.13、240.【解析】

試題分析:∠1+∠2=180°+60°=240°.考點:1.三角形的外角性質(zhì);2.三角形內(nèi)角和定理.14、x(y+2)(y-2)【解析】

原式提取x,再利用平方差公式分解即可.【詳解】原式=x(y2-4)=x(y+2)(y-2),故答案為x(y+2)(y-2).【點睛】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關(guān)鍵.15、2(x+)(x-).【解析】

先提取公因式2后,再把剩下的式子寫成x2-()2,符合平方差公式的特點,可以繼續(xù)分解.【詳解】2x2-6=2(x2-3)=2(x+)(x-).

故答案為2(x+)(x-).【點睛】本題考查實數(shù)范圍內(nèi)的因式分解,因式分解的步驟為:一提公因式;二看公式.在實數(shù)范圍內(nèi)進行因式分解的式子的結(jié)果一般要分到出現(xiàn)無理數(shù)為止.16、【解析】

過點B作BD⊥AC于D,設(shè)AH=BC=2x,根據(jù)等腰三角形三線合一的性質(zhì)可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根據(jù)三角形的面積列方程求出BD,然后根據(jù)銳角的正弦=對邊:斜邊求解即可.【詳解】如圖,過點B作BD⊥AC于D,設(shè)AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根據(jù)勾股定理得,AC==x,S△ABC=BC?AH=AC?BD,即?2x?2x=?x?BD,解得BC=x,所以,sin∠BAC=.故答案為.17、甲【解析】

根據(jù)甲,乙兩公司折線統(tǒng)計圖中2014年、2018年的銷售量,計算即可得到增長量;根據(jù)兩個統(tǒng)計圖中甲,乙兩公司銷售增長量即可確定答案.【詳解】解:從折線統(tǒng)計圖中可以看出:甲公司2014年的銷售量約為100輛,2018年約為600輛,則從2014~2018年甲公司增長了500輛;乙公司2014年的銷售量為100輛,2018年的銷售量為400輛,則從2014~2018年,乙公司中銷售量增長了300輛.所以這兩家公司中銷售量增長較快的是甲公司,故答案為:甲.【點睛】本題考查了折線統(tǒng)計圖的相關(guān)知識,由統(tǒng)計圖得到關(guān)鍵信息是解題的關(guān)鍵;三、解答題(共7小題,滿分69分)18、(1)120;(2)54°;(3)詳見解析(4)1.【解析】

(1)根據(jù)B的人數(shù)除以占的百分比即可得到總?cè)藬?shù);(2)先根據(jù)題意列出算式,再求出即可;(3)先求出對應的人數(shù),再畫出即可;(4)先列出算式,再求出即可.【詳解】(1)(25+23)÷40%=120(名),即此次共調(diào)查了120名學生,故答案為120;(2)360°×=54°,即扇形統(tǒng)計圖中D所在扇形的圓心角為54°,故答案為54°;(3)如圖所示:;(4)800×=1(人),答:估計對食品安全知識“非常了解”的學生的人數(shù)是1人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖,總體、個體、樣本、樣本容量,用樣本估計總體等知識點,兩圖結(jié)合是解題的關(guān)鍵.19、(1)m=8,反比例函數(shù)的表達式為y=;(2)當n=3時,△BMN的面積最大.【解析】

(1)求出點A的坐標,利用待定系數(shù)法即可解決問題;(2)構(gòu)造二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】解:(1)∵直線y=2x+6經(jīng)過點A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過點A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點M,N的坐標為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時,△BMN的面積最大.20、(1)見解析;(2)EC=1.【解析】

(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性質(zhì)可推出∠F=∠BDE,再根據(jù)對頂角相等進行等量代換即可推出∠F=∠FDA,于是得到結(jié)論;(2)根據(jù)解直角三角形和等邊三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=BD=2,∵AB=AC,∴△ABC是等邊三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【點睛】本題主要考查等腰三角形的判定與性質(zhì)、余角的性質(zhì)、對頂角的性質(zhì)等知識點,關(guān)鍵根據(jù)相關(guān)的性質(zhì)定理,通過等量代換推出∠F=∠FDA,即可推出結(jié)論.21、(1)見解析;(2).【解析】

(1)連接OD,由DH⊥AC,DH是⊙O的切線,然后由平行線的判定與性質(zhì)可證∠C=∠ODB,由圓周角定理可得∠OBD=∠DEC,進而∠C=∠DEC,可證結(jié)論成立;(2)證明△OFD∽△AFE,根據(jù)相似三角形的性質(zhì)即可求出圓的半徑.【詳解】(1)證明:連接OD,由題意得:DH⊥AC,由且DH是⊙O的切線,∠ODH=∠DHA=90°,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)解:由(1)可知:OD∥AC,∴∠ODF=∠AEF,∵∠OFD=∠AFE,∴△OFD∽△AFE,∴,∵AE=1,∴OD=,∴⊙O的半徑為.【點睛】本題考查了切線的性質(zhì),平行線的判定與性質(zhì),等腰三角形的性質(zhì)與判定,圓周角定理的推論,相似三角形的判定與性質(zhì),難度中等,熟練掌握各知識點是解答本題的關(guān)鍵.22、解:設(shè)OC=x,在Rt△AOC中,∵∠ACO=45°,∴OA=OC=x.在Rt△BOC中,∵∠BCO=30°,∴.∵AB=OA﹣OB=,解得.∴OC=5米.答:C處到樹干DO的距離CO為5米.【解析】解直角三角形的應用(仰角俯角問題),銳角三角函數(shù)定義,特殊角的三角函數(shù)值.【分析】設(shè)OC=x,在Rt△AOC中,由于∠ACO=45°,故OA=x,在Rt

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論