版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
J.Geogr.Sci.2010,20(5):787-798
DOI:007/s11442-010-0811-8
?2010
ScienceChinaPress
Springer-Verlag
Generalmultidimensionalcloudmodelandits
applicationonspatialclusteringinZhanjiang,Guangdong
DENGYu1,4,*LIUShenghe1,ZHANGWenting2,WANGLi3,4,WANGJianghao1,4
1.InstituteofGeographicSciencesandNaturalResourcesResearch,CAS,Beijing100101,China;
2.SchoolofResourcesandEnvironmentScience,WuhanUniversity,Wuhan430079,China;
3.InstituteofPolicyandManagement,CAS,Beijing100080,China;
4.GraduateUniversityofChineseAcademyofSciences,Beijing100049,China
Abstract:Traditionalspatialclusteringmethodshavethedisadvantageof“hardwaredivision”,
andcannotdescribethephysicalcharacteristicsofspatialentityeffectively.Inviewoftheabove,thispapersetsforthageneralmulti-dimensionalcloudmodel,whichdescribesthecharacteristicsofspatialobjectsmorereasonablyaccordingtotheideaofnon-homogeneousandnon-symmetry.Basedoninfrastructures’classificationanddemarcationinZhanjiang,adetailedinterpretationofclusteringresultsismadefromthespatialdistributionofmembershipdegreeofclustering,thecomparativestudyofFuzzyC-meansandacoupledanalysisofresidentiallandprices.Generalmulti-dimensionalcloudmodelreflectstheintegratedchar-acteristicsofspatialobjectsbetter,revealsthespatialdistributionofpotentialinformation,andrealizesspatialdivisionmoreaccuratelyincomplexcircumstances.However,duetothecomplexityofspatialinteractionsbetweengeographicalentities,thegenerationofcloudmodelisaspecificandchallengingtask.
Keywords:multi-dimensionalcloud;spatialclustering;datamining;membershipdegree;Zhanjiang
1
Introduction
Withtherapiddevelopmentofmodernscienceandtechnology,thecapacityofaccessing
datahasbeengreatlyimproved.However,thecomplexityofmassivedataandthetimelinessofdataprocessinghaspreventedtheeffectiveuseofdata,wegetintoacontradictionin“richdata,meagerknowledge”(Liu,2007).Inordertosearchformorevaluableknowledge,DataMiningandKnowledgeDiscoveryemerges,whichhasbecomethefocusofinterna-tionalresearchandapplications(Macqueen,1967).Spatialclusteringisoneoftheimportantmethodsappliedtospatialdataminingandknowledgediscovery.Therearemanymethodsofspatialclusteringincludingpartitioningmethod(KaufmanandRousseeuw,1990),hier-
Received:2010-02-06Accepted:2010-04-16
Foundation:NationalNaturalScienceFoundationofChina,No.40971102;KnowledgeInnovationProjectoftheChineseAcademyofSciences,No.KZCX2-YW-322;SpecialGrantforPostgraduates’ScientificInnovationandSo-cialPracticein2008
Author:DengYu(1985–),Ph.DCandidate,specializedinurbandevelopmentandlanduse.E-mail:
HYPERLINKmailto:rain00788@163
rain00788@163
*Correspondingauthor:LiuShenghe,Professor,E-mail:
HYPERLINKmailto:liush@igsnrr.ac
liush@igsnrr.
scichina
springeom
archymethod(Berkhin,2000;Zhangetal.,1996;KarypicandHan1999),methodbasedon
network(Wangetal.,1997;Sheikholeslamietal.,1998),andmethodbasedondensity(Es-teretal.,1996;Ankerstetal.,1999).Traditionalmethodsofspatialclusteringcannotover-comethedefectofhardwaredivisioneffectively,aswellasareasonableexpressionofdy-namicchange.Therefore,itisparticularlyurgenttolookfornewmethodsofspatialcluster-ing.
Thecloudmodel,whichwasintroducedtoChinabyLiDeyi,isaqualitativeandquanti-tativeuncertaintyconversionmodelwhichwasbuiltonthebasisoftraditionalfuzzysettheory,probabilityandstatistics.Itorganicallycombinesfuzzinessandrandomnessofun-certainconceptandrealizestheconversionbetweenuncertainlanguagevalueandquantita-tivevalue(Lietal.,1995).Subsequently,LiDeyidiscussedtheuniversalnatureofnormalcloudmodelandbroadenedthescopeofitsapplications(LiandLiu,2004).Inordertoraisetheawarenessofcloudmodelanditsapplicationlevel,LiuChangyuanalyzedthestatisticalsignificanceandparameterscharacteristicsofthenormalcloudmodel(Liu,2005).Onthisbasis,thecloudmodeliswidelyusedinspatialgeneralizedknowledgeandassociationrulesmining,foundedknowledgeexpression,continuousdatadiscretization,spatialdatabaseun-certaintyqueryandinference,remotesensingimageinterpretationandidentification(Lietal.,1997;Lietal.,1998;Dietal.,1999;Liuetal.,2004).Astheapplicationdeepens,cloudtheorysystemisincreasinglymature,suchascloudmodel,virtualcloud,cloudcomputing,cloudtransform,uncertaintyreasoningandsoon(LiandLiu,2004;Li,2000).Moreover,theoreticalresearchhasinstructivesignificanceonpracticalapplications.
Cloudmodelwakenednewinterestintheapplicationofclusteringbecauseitappliesfuzzinessandrandomnessofclouddropstoretaintheuncertaintymembershipofspatialinformation.Itcanovercomemanyproblemssuchasavoidingthedefectofhardwaredivi-sioneffectively,aswellasexpressingtheprocessofdynamicchangeofspatialobjectsrea-sonably(Tang,1986;Chen,1998;Houetal.,2008),andreallyimplement“softdivision”,whichtraditionalspatialclusteringmethodscannotachieve.QinKun(2006)appliedcloudmodelinimageclassificationandclustering,whichwasthefirstattemptofpracticalappli-cation(Qin,2006).Wangclassifiedthespatialobjectsuccessfullyusingcloudmodel(Wang,
2007a).Wangdidclusteringresearchonthespatialobjectafter“potentialtransform”(Wang,
2007b),whichmadesomeprogressaswell.However,allofthemdidnotfullyreflectthemulti-dimensionalcharacteristicsofspatialdata.Thesemethodswhichachievethepurposeofdimensionalityreductiononlyrelyingondataintegrationstillhavemanydefects,whileweightingascertainmentistoosubjective.Moreover,theerrorproducedbynormalatomiccloudfittingcannotbecontrolledeffectivelywhentheleafnodesinpanconcepttreegener-ates,andthismethodcannotexpressthecomplexityofthecharacteristicsofspatialobjectsaccurately.
Inviewoftheabove,thispapersetsforthageneralmulti-dimensionalcloudmodel,thismodeldescribesthecharacteristicsofspatialobjectsmorereasonablyaccordingtotheideaofnon-homogeneousandnon-symmetry,thereforethenewmethodismoreaccordanttopractice.Onthisbasis,thispaperanalyzesthespaceobjectwithclustersbyapplyinggeneralmulti-dimensionalcloudmodel.Themethodavoidedtheissueofindexweightascertain-ment(LiandZheng,2004;Zhangetal.,2004),anditsclusteringresultsembodiedtheinte-gratedcharacteristicsofspaceobjects,reflectedthespatialdistributionofthepotentialin-
DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang
789
formation,andrealizedspatialdivisionmoreaccuratelyincomplexcircumstances.There-
fore,generalmultidimensionalcloudmodelcanbewidelyappliedtotheresearchonspatialdataminingandknowledgediscovery.
2 Cloudmodelandgeneralmultidimensionalcloudmodel
Cloudmodel
Cloudmodeltakesexpectationvalue(Ex),entropy(En)andsuper-entropy(He)asatoken
ofqualitativeconcept.Itcombinesfuzzinessandrandomnesstogetherduringqualitativetransform.Exreflectsthecloudcenteroftheclouddrops.Enrevealsthefuzzinessofthe
rangeofconceptnumerical.ThevalueofHereflects
DigitalcharacteristicsofcloudareshownasFigure1.
the
discretedegreeof
cloud
drops.
Figure1 Digitalcharacteristicsofcloud
Ithasbeendemonstratedthatatomiccloudisuniversallyadaptable(LiandLiu,2004).
However,incomplexrealworld,thishomogeneityandsymmetryaredifficulttomeet.Inordertoportraytheobjectivethingsmoreaccurately,generalmultidimensionalcloudmodelemerged.Figure2isacomparisondiagramofastandardone-dimensionalandageneralmultidimensionalcloudmodel.
Figure2 Comparisondiagramsof1Dnormalcloudandgeneralcloud
Generalmultidimensionalcloudmodel
Generalcloudovercomestheshortcomingsofunreasonablespatialdivision,ithasseveral
non-equilibriumandnon-symmetricforms;ontheotherhand,theheterogeneouscharacter-isticsofgeneralmulti-dimensionalcloudmodelhasgreatsuperiorityinsimulatingcomplexphenomena.Forexample,thedelimitationofinfluenceradiusofbusinessservicecenterusuallyspreadalongthetrafficroute,orspreadtoresidentialareasinacertaindirectionun-symmetrical.Inordertodealwithsuchproblemseffectively,thepresentationofgeneralcloudmodelseemsparticularlyimportant.
Whennecessary,usingtherelativepositiontothe“cloudcores”todescribethedirectionrange,andselectingappropriatenormalcloudfunctioncanmeettherequirementsofcom-plexsituations.Generalcloudmodelissubstantiallypiecewise,anditsbasicformulaisshowninFigure3(takingtwo-dimensionalcloudmodelasanexample):
?
1?(x1?Ex1)2(x2?Ex2)2?
?
+
?
?
??
?
(En11)2 (En21)2
2??
?e
x1<Ex1andx2>Ex2
μi=?
(1)
1?(x1?Ex1)2(x2?Ex2)2?
??
+
?
?
??others
2??(En12)2
(En22)2
?e
?
whereμiisdegreeofmembership,xiisabscissavalueofrandomdot,andx2isordinate
valueofrandomdot.(Ex1,Ex2)isexpectationpairoftwo-dimensionalcloudmodel.(En11,
En21)isentropypairofonedirection,and(En12,En22)isentropypairoftheotherdirection.
Figure3 Comparisondiagramof2Dnormalcloudandgeneralcloud
3
Studyofclusteringbasedongeneralmultidimensionalcloudmodel
Thebasicideainspatialclusteringmethodbasedongeneralmultidimensionalcloudmodel
isasfollows:Firstofall,determinereasonablemultidimensionalcloudmodelparametersaccordingtotheradiationrangeandattributedimensionaswellasrelatedcharacteristicsofaspatialobject,andthengenerateatomicclouds,thatis,leafnodeinpan-concept-tree.Secondly,raisethelowerconceptualfinenesstoahigherlevelaccordingtosyntheticopera-torofamultidimensionalcloudmodel.Stopthisstepwhenthenumberofconceptsequalstothenumberofclassificationgrades.Finally,getthemembershipdegreeofeachspatialob-jectsfromahigher-levelconcept.Theconceptwiththehighestmembershipdegreetoanobjectistherelatedconceptofthatobject.
DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang
791
Generationofatomiccloud
Spatialobjectsarerepresentedbyconcept,whileatomiccloudisthesmallestconceptparti-
cle.Thesingleobjectcanbeconsideredasatomiccloud,andthushowtodeterminetherelevantparametersisespeciallyimportantaccordingtothecomplexityandcomprehen-sivenessofspatialobjects.
Expectationvalue(Ex)reflectsthehorizontallocationoftheatomiccloud,areflectionoftheconceptof“core”.Themembershipdegreeofthelocationwhereexpectationstandsis1,anditdecreasesgraduallywiththedistance.Entropy(En)hasanexplicitgeographicmean-ing,itisametricofspatialradiationrangeaccordingtotheattributevalueofspatialobjects.
?1
Rmax?Rmin
Ai≠Amin
Ai=Amin
?(Ai?Amin)?
?
Eni=?3
??b
Amax?Amin
(2)
whereAistheattributevalueofspatialobject,Amin,Amaxaretheminimumandmaximumof
attributevalues;Rmin,Rmaxaretheminimumandmaximumofradiationdistance;bisaun-
determinedconstant;constant isobtainedbytheformulaen=1R.
1
3
3
Basedonthenon-homogeneousandnon-symmetryattributesofspatialobjects,entropyalsohaspiecewisefeatures,thatis,anisotropy.Thusweshouldintroduceacorrectionα,
whichcandepictthecomplexgeographicphenomenonmoreaccurately.Theexpressionisasfollows:
?Eni
En=?
(3)
?(1+α)?Eni
Thenormalcloudisanormaldistributedcloudwhosedeviationdegreefromthenormal
distributionismeasuredbysuperentropyHe.IfHe=0,cloudmodeldegenerateintoordi-narynormaldistribution.Inordertoshowthedynamicchangesofradiationrange,andcon-trolthefuzzydegreeof“BothThisandThat”characteristic,thesettingofHeisveryimpor-tant.Takeallfactorsintoconsideration,thesettingofHeis0.1(Qinetal.,2006).
Afterparametersetting,theatomiccloud--thegenerationofleafnodesofpanconcepttreeterminated.Thismethodtakesconsiderationofboththeaccurateexpressionofcentralcon-ceptandthecharacteristicsofedgedynamicchanges.
Climbingofuniversalconceptualnumber--Cloudcomputing
Atomiccloudisraisedfromextendedmultidimensionalcloudmodeltoahigherlevelcon-
ceptualfinenessgraduallybycomprehensiveoperations.Theconceptualtreebuiltbycloudmodelhaspropertyofuncertainty,andtheboundarybetweenconceptsisvague.Conceptfinenessinlowerlevelcanclimbtoahighleveltogeneratetheneededleafnodesinpanconcepttree.Thenumberoftypesdecidesthenumberofrootnodes.Piecewiseandmulti-formationcharacteristicofatomiccloudhaveraisedahigherdemandforcloudopera-tion.Superpositionofdifferentatomiccloudscanbetreatedflexibly,andatomiccloudsinthesamemembershipintervalaredescribedasfollows:
C(Ex1,Ex2,En1,En2,He1,He2),
A2(Ex21,Ex22,En21,En22,He21,He22),...,
Am(Exm1,Exm2,Enm1,Enm2,Hem1,Hem2)
Applying“Soft-Or”method,cloudsyntheticalgorithmcanbeamelioratedsentedasfollows(Jiangetal.,2000):
and
repre-
WhenthedistancebetweenA1andA2istheminimum,thatisDmin=A1,A2
Ex1=(Ex11+Ex21)/2+(En21?En11)/4;Ex2=(Ex12+Ex22)/2+(En22?En12)/4;En1=(Ex21?Ex11)/4+(En11+En21)/2;En2=(Ex22?Ex12)/4+(En12+En22)/2;
He1=max(He11,He21);
He2=max(He12,He22);
:
(4)
(5)(6)(7)(8)
(9)
Conceptpromotingistogetthedifferencebetweenconceptfinenessinthesamelevel,the
mostcommonofwhichisEuclideandistance,andtocombinetheconceptwithminimalex-pectationdifference.Usingmulti-dimensionalcloudsyntheticoperatormentionedabove,thelevelofnodesinpan-concept-treecanberaisedstagebystage.Itisworthemphasizingthatweshouldemploytheunionofdifferentscope,whenfacingconceptsinthesamelevelwithdifferentdirection.
3.3
Determiningclass--X-conditiongenerators
Whenthenumberoffatherconceptualcloudsinthehighestlevelreachesthenumberof
classificationcategories,pan-concept-treebasedoncloudmodelhasbeenbuilt,andthecloudsynthesisfinishes.Then,themembershipdegreeofeachorderedsettoitsrelevantconceptinahigherlevelisgainedonthebasisofanX-conditionnormalcloudmodel.Amongallclasses,theonewiththehighestmembershipdegreeisdefinedasthemember-shipanalysisresultofitsrelevantobject.Thespecificalgorithmcanbedescribedinthefol-lowingsteps:
Step1:Estimatethepositionalmembershipbetween(x1,x2)and(Ex1,Ex2),findoutthecorrespondingcloudfunction
Step2:Computeformula(P1i,P2i)=R1(Ex1,Ex2,En1,En2),andget(P1i,P2i)asarandom
numberundernormaldistributionwithEnasitsexpectationvalueandHeasitsstandardiza-tiondifference.
1?(x1?Ex1)2(x2?Ex2)2?
?
+
?
?
??
(P1i)2 (P2i)2
2??
Step3:Computeformulaμi=e
(10)
Step4:ComputeMaxμi,andtheobjectthatisbeingstudiedfallsintotherelevantClassi.
4
ApplicationonacasestudyinZhanjiang
AccordingtotheGeneralMultidimensionalCloudModelanditsbasicideasintheSpatial
ClusteringResearch,thispaperusestheclusteringofhighschoolsinZhanjiangcityasastudycase.ZhanjiangliesinthewestofGuangdongProvince,whichisoneofthefirstbatchofopencoastalcities.Owingtoitspredominantgeologicallocation,Zhanjianghashadarapiddevelopmentofsocietyandeconomy.Theauthorhasparticipatedinthemultiple-indexlandpriceevaluationofZhanjiangandmasteredthebasicdataandserviceconditionsof
DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang
793
variousinfrastructuresincludinghighschools.Therefore,therelatedmeasurementresults
andspatialmodificationinformationinthebaselandvalueevaluationreportofZhanjiangcanbeusedtoascertaintheconceptionalparameterofthegeneralcloudmodel.Furthermore,comparativeanalysisoftheclusteringresultsandresidentialstandardlandpricedistributionmapcanbeusedtofurtherembodythevalueandadvantageofgeneralcloudmodel.Dividetheresearchareainto120×120gridsandeachofthegridsis250×250m2.Figure4showsthedistributionmapofthegeneralcloudmodeldefinedbythebasicdataofthehighschools
intheresearcharea.
Wecantentativelydividespatialpatternofhighschools’servicezoneintofourareas.Theneveryschoolmaybelongtoacertainzoneaccordingtotheclassification.Figure5showstheclusteringresultsoperatedbythecloudsyntheticoperator,andthenumberoftheclassescanbedifferentwithdifferentsituations.WecanseefromFigure5thattheresultoftheclusteringcloudisobviouslyanisotropic,andthedivisionofthespatialclassescanbereflectedbythespatialcoveragerangeoftheclasses.Itisnoteworthythatnoneofthespatialentitiestotallybelongtoacertainclass,thatistosay,thedivisionoftheclassesis“Both
ThisandThat”.However,eachentityhasthemaximummembershipdegreeaccording
itself.
to
Figure4
Distributionofcloudmodel
Figure5
Resultsofclassification
JustaswhatFigure6shows,therearefourclusterdistrictsofmembershipdegreeinspace,
themaximummembershipdegreeisoclinesattenuatefromthecentertotheperipheralarea
ofeachclass.Duetothecorrectionofthecalculationofhighschools’serviceradius,the
membershipdegreechangessharplyinthedirectionofnorthwest,whileattenuatingsmoothlyinotherdirections.Thisresultsinthenoncontinuousdistributionofthemember-shipdegreeinthedirectionofnorthandwest.Wecanclassifythesehighschoolsaccordingtothemaximummembershipdegreeprinciple,andfinishthespatialclusteringwork.
Figure6
Regionalisolinedistributionofthelargestmembership
Furtherinvestigatethemembershipbetweenmembershipdegreeandspatialpositionofeachtypeofobjects,asshowninFigure7,thereisagoodcorrelationbetweenthem:The
correlationcoefficientswithdifferentzonesare:1(west,F=167,sig=0.00),7(south,F=39,sig=0.00),0.98(north,F=26,sig=0.01),and0.99(east,F=2800,sig=0.00).Westzoneincludes17objects,andthemaximumcoveringdistanceis9807m.ComparedwiththemarkofthespatialobjectinFigure6,objectsa1,a2anda3inwestzonearefarawayfromthecenter,whichisresultedfromtheextensionoftheserviceradiusinthedirectionofsoutheast.Southzoneincludes22objects,themostdistantobjectb1whichclassisnotinthedirectionofnorthwest,inthecontrary,thecloserobjectb2isinthisarea,andthusmembershipdegreeofb2issmaller.Northzoneandeastzonehavefewerobjects,thusthefittingresultsaremoresatisfactory.
Figure8revealsthefundamentalsimilarinformationfromtheaspectoffittingerror.Insouthzone,themaximalerrorisupto62%becauseoftheexistenceofb2,whichisthere-flectionoftheanisotropyofspatialobjects’radiation.Overall,membershipdegreeofobjectsdecreaseswiththeincreaseofthedistancetotheclasscenter.Thespatialinfluenceamongobjectscausestheunbalanceddecreaseofthemembershipdegree,whichreflectstheactualsituationmorerationally.
DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang
795
Figure7 Changingtrendsofmembershipofdifferenttypes
Figure8 Residualofmembershipofdifferenttypes
Inordertorepresenttheadvantagesofclusteringmethodbasedongeneralmultidimen-
sionalcloud,hereweanalyzetheclusteringresultsandFCMcomparatively.FCMisaclus-teringalgorithmwhichdeterminesthesubjectiondegreetoacertainclassaccordingtomembershipdegree.Membershipfunctiondescribesthesharinglevelofmodelsbetweenfuzzyclasses.FCMwasputforwardinordertoabsorbtheadvantagesoftraditionalC-meansclustering,suchasitsconvergentspeed,insensitivitytoinitializationandabilitytoshowthesimilarinformationamongsamples.Thefuzzypartitionmatrix(U)isnotonlypartlyexplicitbutalsomaintainsthefuzzinessofsamples’spatialdistributiontherebyin-creasestheaccuracyofclassification(Bezdek,1981).TheclusteringresultbasedonFCMisshowninFigure9.Comparedwiththemethodinthispaper,a1,a2,a3andb1areallclassi-fiedasnorthzone.AlthoughFCMcanensurethesmallestdifferencesamongclasses,itstillcouldnotconsidereffectcharacteristicsofallthespatialobjectsinacomplexgeographicworld.Therefore,FCMishardtomeettherequirementsofscientificclassificationundertheconstraintsofcomprehensivefactors.
Figure9 ClusteringresultsoffuzzyC-means
Figure10showsthedistri-
butionofresidentialaffectingfactorsvalueofZhanjiangcity.Theassessmentcoverageof
the
notthe
spatialdistributiondoes
completelycoincidewith
city
boundaries.Conse-
quently,
havean
clustering
classes
obviousaggregation
withthefourextremeareasof
landvaluedistributions.65%ofspatialobjectsarelocatedintheregionsofhighlandprices,only8%isdistributedinre-gionsoflowlandprices.Thehigherthelandpricesoftheregion,themoreintensivethedistributionofthespatialob-jects.Theregionswithasmallmembershipdegreeoftenhave
Figure10
Relationshipofhousepriceandclusteringresultsin2008
DENGYuetal.:GeneralmultidimensionalcloudmodelanditsapplicationonspatialclusteringinZhanjiang
797
alowlandpriceseither,especiallyinthepricelowlandbetweenclasses,justasthespatial
objecta1,a2,a3andb1inFigure6,whichreflectthefiercecompetitionforspaceobjectsbetweenclasscenters.Thepricelowlandsrevealthecharacteristicsofweaklyabsolutecon-trollingforceofalltheclassesoverobjects,andtheclusteringresultismostlyinfluencedbytheseregions.
5 Conclusionsanddiscussion
(1)Cloudmodelhasdualcharacteristicsoffuzzynessandrandomness,anditshowsgreatsuperiorityintheexpressionofconceptualfineness.One-dimensionalcloudmodelcannotaccuratelyreflectmulti-attributecharacteristicsofthereal-world,andessentialinformationofspatialobjectswaslostduringtheprocedureofsimpledatafusion.Standardtwo-dimensionalcloudmodelovercomessomeshortcomingsofone-dimensionalcloud,butitstillcannotmeettheneedsofsimulatingthenon-homogeneousandnon-symmetrychar-acteristicsofcomplexgeographicalphenomena.Thispaperputsforwardageneralmulti-dimensionalcloudmodel,andtheproblemsabovewereresolvedeffectivelyandfac-tually.
(2)Basedonthedemonstrativestudy,adetailedinterpretationofclusteringresultsismadefromtheintegratedperspectiveofthespatialdistributionofmembershipdegreeofspatialclustering,andthecomparativestudyofFCMandacoupledanalysisofresidentiallandprices.Generalmulti-dimensionalcloudmodelcouldreflecttheintegratedcharacteris-ticsofspatialobjectsbetter,whilethespatialclusteringresultscanrevealthepotentialin-formationofspatialdistribution,andrealizespatialdivisionmoreaccuratelyincomplexcircumstances.
(3)Thepracticalvalueofgeneralmulti-dimensionalcloudmodelinspatialclusteringisnotable.However,parametersetting,theaccuracyanduncertaintyofthemodelareprob-lemstobeovercome.Thecharacteristicofthemodelisthatalltheparametershaveappro-priategeographicalmeanings.Thismakesthedescriptionofgeographicalphenomenamorereasonable.Duetothecomplexityofspatialinteractionsamonggeographicalentities,thegenerationofacloudmodelisstillaspecificandchallengingtask.
References
AnkerstM,BreunigMM,KriegelHPetal.,1999.OPTICS:Orderingpointstoidentifytheclusteringstructure.
In:Proc.ACMSIGMOD’99Int.Conf.onManagementofData,PhiladephiaPA,1999.BerkhinP,2000.Surveyofclusteringdataminingtechniques.AccrueSoftware.
BezdekJC,1981.PatternRecognitionwithFuzzyObjectiveFunctionAlgorithms.NewYork:PlenumPress.
ChenHuilin,1998.Afuzzycomprehensiveanalysisoftheresource-environmentconsciousnessofthepeoplein
MashanregionofGuizhouProvince.ScientiaGeographicaSinica,18(4):379–386.(inChinese)
DiKaichang,LiDeyi,LiDeren,1999.Cloudtheoryanditsapplicationsinspatialdataminingandknowledgediscovery.JournalofImageandGraphics,11(4):930–935.(inChinese)
EsterM,KriegelHP,SanderJetal.,1996.Adensity-basedalgorithmfordiscoveringclustersinlargespatialdatabases.In:Proc.1996Int.Conf.KnowledgeDiscoveryandDataMining(KDD’96),1996:226–331.
HouYingzi,ChenXiaoling,WangFangxiong,2008.FuzzycomprehensiveevaluationofwaterenvironmentvaluebasedonGIS.ScientiaGeographicaSinica,28(1):90–95.(inChinese)
JiangRong,FanJianhua,LiDeyi,2000.Automaticgenerationofpan-concept-treeonnumericaldata.Chinese
JournalofComputers,23(5):470–476.(inChinese)
KarypicG.,HanEH,1999.CHAMELEON:Ahierarchicalclusteringalgorithmusingdynamicmodeling.Com-puter,32:68–75.
KaufmanL,RousseeuwPJ,1990.Findinggroupsindata:Anintroductiontoclusteranalysis.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度危險品運輸與安全裝卸協(xié)議3篇
- 專業(yè)水泥購銷協(xié)議規(guī)范版B版
- 二零二五年度電子商務(wù)平臺建設(shè)與運營管理協(xié)議2篇
- 專項融資委托代理協(xié)議(2024版)版A版
- 個人借款抵押車復(fù)雜合同(2024版)2篇
- 二零二五年度城市綜合體項目投資合作協(xié)議5篇
- 專業(yè)短視頻攝制服務(wù)合同(2024年)3篇
- 2025年度生物制藥研發(fā)與市場推廣合作協(xié)議2篇
- 2025年度廠房物業(yè)管理與能源審計服務(wù)協(xié)議4篇
- 2025年度廠區(qū)生態(tài)景觀綠化養(yǎng)護服務(wù)合同樣本4篇
- 2024版?zhèn)€人私有房屋購買合同
- 2025年山東光明電力服務(wù)公司招聘筆試參考題庫含答案解析
- 《神經(jīng)發(fā)展障礙 兒童社交溝通障礙康復(fù)規(guī)范》
- 2025年中建六局二級子企業(yè)總經(jīng)理崗位公開招聘高頻重點提升(共500題)附帶答案詳解
- 2024年5月江蘇省事業(yè)單位招聘考試【綜合知識與能力素質(zhì)】真題及答案解析(管理類和其他類)
- 注漿工安全技術(shù)措施
- 《食品與食品》課件
- 2024年世界職業(yè)院校技能大賽“食品安全與質(zhì)量檢測組”參考試題庫(含答案)
- 讀書分享會《白夜行》
- 2023上海高考英語詞匯手冊單詞背誦默寫表格(復(fù)習(xí)必背)
- 人民軍隊歷史與優(yōu)良傳統(tǒng)(2024)學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
評論
0/150
提交評論